

An Autonomous Institute Affiliated to Savitribai Phule Pune University

Curriculum for

Bachelor of Technology in

Civil Engineering

(Choice Based Credit System)

2019-2023

Sheeble

BoS Chairman Dean, School of Mechanical & Civil Engineering

Member Secretary Academic Council Dean Academics

Chairman Academic Council Director MITAOE

MIT Academy of Engineering, Alandi, Pune An Autonomous Institute affiliated to Savitribai Phule Pune University

COMMON CURRICULUM FRAMEWORK (Revision 2019)

The Bachelor of Technology Program shall be based on the following type of courses.

	COURSE DISTRIBUTION: SEMESTER WISE											
C N				ΤΟΤΑΙ								
5.N.	TTPE OF COURSE	1	2	3	4	5	6	7	8	- TOTAL 5 8 14 2 3 6 13		
1.	Natural Science (NSC)	2	2		1					5		
2.	Engineering Science (ESC)	4	3	1						8		
3.	Discipline Core (DC)			3	3	3	3	1	1	14		
4.	Discipline Elective (DE)							1	1	2		
5.	Open Elective (OE)					1	1	1		3		
6.	Humanities and Social Science (HSS)		1		1	1	1		2	6		
7.	Skill Development and Project (SDP)			3	2	2	2	3	1	13		
	TOTAL			7	7	7	7	6	5	51		
	Audit Course			1	2		1			5		

	CREDIT DISTRIBUTION: SEMESTER WISE										
	1 Lecture hour = 1 Credit	2	Lab H	ours =	= 1 Cre	edit	1	Tutori	al Hou	ır = 1 Cre	dit
C N			NC). OF (CREDI	TS/SE	MEST	ER		TOTAL	%
3.IN.	TTPE OF COURSE	1	2	3	4	5	6	7	8		
1.	Natural Science (NSC)	8	8		4					20	12.5
2.	Engineering Science (ESC)	13	9	4						26	16.25
3.	Discipline Core (DC)			12	12	11	11	4	4	54	33.75
4.	Discipline Elective (DE)							3	3	6	3.75
5.	Open Elective (OE)					4	4	4		12	7.5
6. Humanities and Social Science (HSS)			2		2	2	2		4	12	7.5
7.	7. Skill Development and Project (SDP)			5	3	4	4	10	4	30	18.75
	TOTAL	21	19	21	21	21	21	21	15	160	100

	CREDITS											
1 L	1 Lecture Hour = 1 Credit, 2 Lab Hours = 1 Credit, 1 Tutorial Hour = 1 Credit											
	VEAD	SEME	STER	тоты								
SL. NO.	TEAR	1	2	TOTAL								
1.	First Year	21	19	40								
2.	Second Year	21	21	42								
3.	Third Year	21	21	42								
4.	Final Year	21	15	36								
	TOTAL	160										

	CONTACT HOURS											
	VEAD	SEME	STER	TOTAL								
5L. NU.	TEAR	1 2		TOTAL								
1.	First Year	29/27	28/30	57								
2.	Second Year	31	31	62								
3.	Third Year	27	30	57								
4.	Final Year	25	20	45								
	TOTAL	221										

	AE	BREVIATIONS					
1.	MSE	Mid Semester Exam					
2.	ESE	End Semester Exam					
3.	IA	Internal Assessment					
4.	T/P	Term Work / Practical					
5.	DM	Demonstration					
6.	L	Lecture					
7.	Р	Practical					
8.	Т	Tutorial					
9.	9. Lab Laboratory						

MIT Academy of Engineering An Autonomous Institute Affiliated to SPPU	COURSE STRUCTURE (REVISION 2019)						
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	:	2019-2020				
	RELEASE DATE	01/07/2019					
FIRST TEAR BACHELOR OF TECHNOLOGT	REVISION NO.	:	1.0				

	SEMESTER: I (PART I)											
INDUCTION PROGRAM (Universal Human Values): 3 WEEKS												
	COURSE				IG E	E	XAMIN	IATION MA	I SCHE RKS	ME AN	ID	C
			Но	our/We	ek	т	HEOR	Y	PRA	СТ	T O	E
TYPE	CODE	NAME	L	Ρ	Т	MSE	ESE	IA	T/P	DM	T A L	I T
NSC1	AS105	Calculus and Differential Equations	3	-	1	20	40	40	50	-	150	4
NSC2	AS106	Engineering Physics	3	2	-	20	40	40	50	-	150	4
ESC1	EX102	Electrical and Electronics Engineering	3	2	-	20	40	40	50	-	150	4
ESC2	ME104	Engineering Graphics	2	4	-	-	60	40	100	-	200	4
ESC3	CS101	Logic Development-C Programming	1	4	-	-	40	-	100	-	140	3
ESC4	ME105	Experimental Tools and Techniques	-	4	-	-	-	-	40	60	100	2
	TOTAL			16	1	60	220	160	390	60	890	21

	SEMESTER: II (PART I)											
	C	OURSE	TI S	EACHIN CHEM	IG E	E	EXAMINATION SCHEME AND MARKS					C
			Н	Hour/Week		THEORY			PRACT		ч	E
TYPE	CODE	NAME	L	Ρ	Т	MSE	ESE	IA	T/P	DM	T A L	I T
NSC3	AS107	Statistics and Integral Calculus	3	-	1	20	40	40	50	-	150	4
NSC4	CH101	Science of Nature	3	2	-	20	40	40	50	-	150	4
ESC5	CV102	Applied Mechanics	3	2	-	20	40	40	50	-	150	4
HSS1	HP103/4/5	English for Engineers /(German/Japanese)	0	4	-	-	-	-	100	-	100	2
ESC6	CS102	Applications Programming -Python	1	4	-	-	40	-	100	-	140	3
ESC7	ME106	Design Thinking	-	4	-	-	-	-	40	60	100	2
HSS2	HP106	Indian Constitution	1	-	-	-	-	-	-	-	Aud	dit
	TOTAL			16	1	60	160	120	390	60	790	19

MIT Academy of Engineering An Autonomous Institute Affiliated to SPPU	COURSE STRUCTURE (REVISION 2019)							
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	:	2019-2020					
	RELEASE DATE	:	01/07/2019					
FIRST TEAR DAGRELOR OF TECHNOLOGY	REVISION NO.	:	1.0					

SEMESTER: I (PART II)												
INDUCTION PROGRAM (Universal Human Values): 3 WEEKS												
	COURSE				NG E	E	XAMIN	IATION MA	N SCHE	ME AN	ID	С
			Но	our/We	ek	Т	HEOR	Y	PRA	СТ	T O	E
TYPE	CODE	NAME	L	Ρ	Т	MSE	ESE	IA	T/P	DM	T A L	I T
NSC1	AS105	Calculus and Differential Equations	3	-	1	20	40	40	50	-	150	4
NSC4	CH101	Science of Nature	3	2	-	20	40	40	50	-	150	4
ESC5	CV102	Applied Mechanics	3	2	-	20	40	40	50	-	150	4
HSS1	HP103/4/5	English for Engineers /(German/Japanese)	0	4	-	-	-	-	100	-	100	2
ESC3	CS101	Logic Development-C Programming	1	4	-	-	40	-	100	-	140	3
ESC7	ME106	Design Thinking	-	4	-	-	-	-	40	60	100	2
	TOTAL			16	1	60	160	120	390	60	790	19

SEMESTER: II (PART II)												
	со	URSE	TE	EACHIN Chem	NG E	EXAMINATION SCHEME AND MARKS						C
			Н	Hour/Week		THEORY			PRACT		T O	E
PE	CODE	NAME	L	Ρ	Т	MSE	ESE	IA	T/P	DM	T A L	I T
NSC3	AS107	Statistics and Integral Calculus	3	-	1	20	40	40	50	-	150	4
NSC2	AS106	Engineering Physics	3	2	-	20	40	40	50	-	150	4
ESC1	EX102	Electrical and Electronics Engineering	3	2	-	20	40	40	50	-	150	4
ESC2	ME104	Engineering Graphics	2	4	-	-	60	40	100	-	200	4
ESC6	CS102	Applications Programming -Python	1	4	-	-	40	-	100	-	140	3
ESC4	ME105	Experimental Tools and Techniques	-	4	-	-	-	-	40	60	100	2
HSS2	HSS2 HP106 Indian Constitution		1	-	-	-	-	-	-	-	Au	dit
	TOTAL			16	1	60	220	160	390	60	890	21

A	M		COURSE STRUCTURE (REVISION 2019)									
	SCHOOL O	F MECHANICAL AND CIVI ENGINEERING	L			W.E.	F		:	202	0-2021	
SECO	ND YEAR B	BACHELOR OF TECHNOL	OGY	IN	RELEASE DATE : 01/07/						07/2020)
	CI	VIL ENGINEERING			R	EVISIO	N NO.		:		1.0	
			SE	MESTE	R: III							
		SUMMER	INTE	RNSH	IP (A	udit: C	/200)					
	COURSE					EXA	MINATI	ON SC	HEME	AND MA	RKS	С
			н	our/We	eek	-	THEORY	,	PR	АСТ	T O	
TYPE	CODE	NAME	L	Р	т	MSE	ESE	IA	T/P	DM	T A L	I T
ESC8	ME221	Material Engineering	3	2	-	35	35	30	50	0	150	4
DC01	CV204	Geotechnical Engineering	3	2	-	35	35	30	50	0	150	4
DC02	CV205	Building Design & Construction	3	2	-	35	35	30	50	0	150	4
DC03	CV206	Mechanics of Solids	3	2	-	35	35	30	50	0	150	4
SDP1	ET235	Rapid Prototyping	0	4	-	0	0	25	0	50	75	2
SDP2	CV230	Minor Project Design	0	2	-	0	0	0	0	50	50	1
SDP3	CV23#	Skill Development Course-1 (Excel / REVIT)	0	4	-	0	0	25	0	50	75	2
ESC9	CV203	Environmental Sciences	1	0	-	-	-	-	-	-	Au	ıdit
		TOTAL	13	18	0	140	140	170	200	150	800	21
			SE	MESTE	R: IV							
	(COURSE	TE		ig E	EXA	MINATIO	ON SC	HEME A	ND MA	RKS	С
			Но	our/We	ek	Т	HEORY		PR	АСТ	T	E
TYPE	CODE	NAME	L	Ρ	т	MSE	ESE	IA	T/P	DM	T A L	D I T
NSC5	AS203/4	Applied Mathematics	3	2	-	35	35	30	50	0	150	4
DC04	CV214	Mechanics of Fluids	3	2	-	35	35	30	50	0	150	4
DC05	CV215	Surveying & Geospatial Engineering	3	2	-	35	35	30	50	0	150	4
DC06	CV216	Structural Analysis	3	2	-	35	35	30	50	0	150	4
SDP4	ET224	Digital Prototyping	0	4	-	0	0	25	0	50	75	2
SDP5	CV240	Minor Project Implementation	0	2	-	0	0	0	0	50	50	1
HSS3	HP202	Professional Skill	0	4	-	0	0	25	0	50	75	2
HSS4	HP203	Liberal Learning	1	0	-	-	-	-	-	-	Au	Idit
		IOTAL	13	18	0	140	140	170	200	150	800	21

MIT Academy of Engineering Autonomous Institute Affiliated to SPPU	COURSE STRUCTURE (REVISION 2019)					
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	:	2021-2022			
THIRD YEAR BACHLEOR OF TECHNOLOGY IN	RELEASE DATE	:	01/07/2021			
CIVIL ENGINEERING	REVISION NO.	:	1.0			

Т

Г

	SEMESTER: V											
	SUMMER INTERNSHIP (Audit: CV300)											
COURSE TEACHING SCHEME EXAMINATION SCHEME AND MARKS											CB	
			Но	ur/We	ek	٦	THEOR	(PR	АСТ	T O	E
TYPE	CODE	NAME	L	Ρ	Т	MSE	ESE	IA	T/P	DM	T A L	I T
DC07	CV305	Concrete Technology	3	2	-	35	35	30	50	0	150	4
DC08	CV306	Drinking Water & Sanitary Engineering	3	2	-	35	35	30	50	0	150	4
DC09	CV307	Design of Steel Structure	3	0	-	35	35	30	0	0	100	3
OE01	CV32#	Open Elective-01 (CPM / EE)	3	2	-	35	35	30	50	0	150	4
HSS5	CS361	Project Management	2	0	-	0	50	25	0	0	75	2
SDP6	CV342	Skill Development Course – 2 (ETABS)	0	4	-	0	0	25	50	0	75	2
SDP7	CV350	Project Design	0	4	-	0	0	25	0	50	75	2
		TOOTAL	15	12	0	140	190	195	200	50	775	21

SEMESTER: VI													
COURSE			TE S	TEACHING SCHEME EXAMINATION SCHEME AND MARKS						RKS	C		
ТҮРЕ	CODE	NAME	Hour/Week		Hour/Week THEORY		PRACT		T O T A L	E D T			
			L	Р	Т	MSE	ESE	IA	T/P	DM			
DC10	CV312	Design of Reinforced Concrete Structure	3	2	-	35	35	30	50	0	150	4	
DC11	CV313	Transportation Engineering	3	2	-	35	35	30	50	0	150	4	
DC12	CV314	Water Resources Engineering	3	0	-	35	35	30	0	0	100	3	
OE02	CV33#	Open Elective-02 (CPM / EE)	3	2	-	35	35	30	50	0	150	4	
SDP8	CV34#	Skill Development Course – 3 (OpenRoad Designer / WATERGEMS)	0	4	-	0	0	25	50	0	75	2	
SDP9	CV360	Project Implementation	0	4	-	0	0	25	0	50	75	2	
HSS6	HP305	Employability and Career Development	0 4 -		0	0	25	0	50	75	2		
	TOTAL				0	140	140	195	200	100	775	21	

MIT Academy of Engineering Autonomous Institute Affiliated to SPPU	COURSE STRUCTURE (REVISION 2019)					
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	:	2022-2023			
FINAL YEAR BACHELOR OF TECHNOLOGY IN	RELEASE DATE	:	01/07/2022			
CIVIL ENGINEERING	REVISION NO.	:	1.0			

SEMESTER: VII												
COURSE			TEACHING SCHEME			EXAMINATION SCHEME AND MARKS					C R	
		Hour/Week			THEORY			PRACT		T O	E D	
ТҮРЕ	CODE	NAME	L	Р	т	MSE	ESE	IA	T/P	DM	A L	I T
DC13	CV405	Estimating and Costing	3	2	-	35	35	30	50	0	150	4
DE01	CV47#	Discipline Elective - 1	3	-	-	35	35	30	0	0	100	3
OE03	CV42#	Open Elective-03 (CPM / EE)	3	2	-	35	35	30	50	0	150	4
SDP10	CV43#	Skill Development Course – 4 (CFD / QGIS)	-	4	-	0	0	25	50	0	75	2
SDP11	CV470	Project Evaluation	-	8	-	0	0	50	0	100	150	4
SDP12	SDP12 CV400 Summer Internship			-	-	-	-	-	-	150	150	4
	TOTAL			16	0	105	105	165	150	250	775	21

	SEMESTER: VIII (PART A)											
	TE S	TEACHING SCHEME EXAMINATION SCHEME AN					ND MAF	ID MARKS				
			Hour/Week			THEORY			PRACT		T O	E D
TYPE	CODE	NAME	L	Ρ	т	MSE	ESE	IA	T/P	DM	T A L	T
DC14	CV406	Design of Hydraulic Structures	3	2	-	35	35	30	50	-	150	4
DE02	CV47#	Discipline Elective - 2	3	-	-	35	35	30	-	-	100	3
SDP13	CV480	Capstone Portfolio	-	8	-	-	-	-	-	150	150	4
HSS7	HP405	Engineering Economics	2	-	-	-	50	25	-	-	75	2
HSS8	HSS8 HP406 Psychology		2	-	-	-	50	25	-	-	75	2
TOTAL			10	10	0	70	170	110	50	150	550	15

SEMESTER: VIII (PART B SEMESTER LONG INTERNSHIP)												
COURSE				EACH SCHEI	ING ME	EXAMINATION SCHEME AND MARKS					RKS	C R
			Hour/Week		THEORY		PRACT		T O	E D		
TYPE	YPE CODE NAME	NAME	L	Ρ	т	MSE	ESE	IA	T/P	DM	A L	I T
DC14	CV406	Design of Hydraulic Structures	3	2	-	35	35	30	50	-	150	4
DE02	CVSWAYAM#	Discipline Elective - 2	3	-	-	35	35	30	-	-	100	3
SDP14	CV467	Semester Long Internship Design	-	-	-	-	-	-	-	150	150	4
SDP15 CV468 Semester Long Internship Implementation		-	-	-	-	-	-	-	150	150	4	
	тс	6	2	0	35	35	30	-	300	550	15	

Discipline Elective (DE): 2 Courses (6 Credits)									
SI. No.	Course Code	Course Name	Course Credit						
1	CV471	Building Services							
	CV472	Structural Dynamics & Earthquake Engineering	2						
1.	CV473	Railway Engineering	3						
	CV474	Numerical Methods in Civil Engineering							
	CV475	Foundation Engineering							
	CV476	Geospatial Tools and Techniques							
	CV477	Air and Noise Pollution							
	CV478	Finite Element Methods							
2	CVSWAYAM01	Discipline Elective Swayam MOOC Courses	2						
Ζ.	CVSWAYAM02	Discipline Elective Swayam MOOC Courses	3						
	CVSWAYAM03	Discipline Elective Swayam MOOC Courses							
	CVSWAYAM04	Discipline Elective Swayam MOOC Courses							
	CVSWAYAM05	Discipline Elective Swayam MOOC Courses							
	CVSWAYAM06	Discipline Elective Swayam MOOC Courses							

	Natural Science (NSC): 5 Courses (20 Credits)									
SI. No.	SI. No. Course Code Course Name									
1.	AS105	Calculus and Differential Equations	4							
2.	AS106	Engineering Physics	4							
3.	CH101	Science of Nature	4							
4.	AS107	Statistics and Integral Calculus	4							
5.	AS203/04	Applied Mathematics	4							

	Humanities and Social Science (HSS): 6 Courses (12 Credits)									
SI. No.	Course Code	Course Name	Course Credit							
	HP103	English for Engineers								
1.	HP104	German	2							
	HP105	Japanese								
Audit	HP106	Indian Constitution	Audit							
2.	HP202	Professional Communication	2							
Audit	HP203	Liberal Learning	Audit							
3.	HP304	Project Management	2							
4.	HP305	Professional Skills	2							
5.	HP405	Engineering Economics	2							
6.	HP406	Psychology	2							

	Engineering Science (ESC): 8 Courses (26 Credits)									
SI. No.	Course Code	Course Name	Course Credits							
1.	EX102	Electrical and Electronics Engineering	4							
2.	CV102	Applied Mechanics	4							
3.	ME104	Engineering Graphics	4							
4.	ME105	Experimental Tools and Techniques	2							
5.	ME106	Design Thinking	2							
6.	CS101	Logic Development - C Programming	3							
7.	CS102	Application Programming - Python	3							
0	ME221	Material Engineering	4							
0.	IT221	Engineering Informatics	4							
Audit	CV203	Environmental Sciences	Audit							

Discipline Core (DC): 14 Courses (54 Credits)									
SI. No.	Course Code	Course Name	Course Credits						
1.	CV204	Geotechnical Engineering	4						
2.	CV205	Building Design & Construction	4						
3.	CV206	Mechanics of Solid	4						
4.	CV214	Mechanics of fluids	4						
5.	CV215	Geospatial Engineering	4						
6.	CV216	Structural Analysis	4						
7.	CV305	Concrete Technology	4						
8.	CV306	Drinking Water & Sanitary Engineering	4						
9.	CV307	Design of Steel Structures	3						
10.	CV312	Design of Reinforced Concrete Structures	4						
11.	CV313	Transportation Engineering	4						
12.	CV314	Water Resources Engineering	3						
13.	CV405	Estimating and Costing	4						
14.	CV406	Design of Hydraulics Structures	4						

	Skill Development and Project (SDP): 15 Courses (36 Credits)										
SI. No.	Course Code	Cou	rse Name	Course Credit							
1.	ET235	Rapie	2								
2.	CV230	Minor	1								
2	CV231	Skill	MS Excel	2							
з.	CV232	Course 1	Revit	2							
4.	ET224	Digita	al Prototyping	2							
5.	CV240	Minor Proje	Minor Project Implementation								
6.	CV342	Skill Developm	Skill Development Course 2 (ETABS)								
7.	CV350	Pro	2								
0	CV343	Skill	Skill OpenRoad Designer								
0.	CV344	Course 3	WaterGEMS	2							
9.	CV360	Project In	nplementation	2							
10	CV435	Skill	CFD	2							
10.	CV436	Course 4	QGIS	Z							
11.	CV470	Proje	ct Evaluation	4							
12.	CV400	B. Tech S	ummer Internship	4							
13.	CV480	Caps	tone Portfolio	4							
14.	CV467	Semester Lo	4								
15.	CV468	Semester Long In	4								
Audit	CV200	SY Sun	SY Summer Internship								
Audit	CV300	TY Sum	mer Internship	Audit							

Programme Name	Skill Development Course 1	Skill Development Course 2	Skill Development Course 3	Skill Development Course 4
Chemical	CFD	ASPEN ONE	Aspen EDR	Plant Design Piping
Civil	MS EXCEL / REVIT	ETABS	OpenRoad Designer / WaterGEMS	CFD / QGIS
Computer and Information Technology	CPP/Core Java	RHA I/ Web Technology	Adv. Java/ .Net Core/RHA II	AWS cloud services/ Android App Development
Mechanical	Industrial Measurements & Instrumentation	Computer Aided Product Design	Mechanical Simulations	Object Oriented Programing with Python
Electronics Engineering and ENTC	Data Structures and Algorithms	OOP JAVA / C++	Networking Data Science	EMB Linux/Cloud Computing/Syste m Verilog

	Open Electives (OE): 03 Courses (12 Credits)										
			Semester V		Semester VI		Semester VII				
Programme Name	Open Track Name	Course Code	Course Name	Course Code	Course Name	Course Code	Course Name				
							1				
Chemical	Process Engineering	CH351	Process Engineering	CH371	Process Modeling and Simulation	CH471	Process Intensification and Integration				
Engineering	Energy Engineering	CH352	Energy Technology	CH372	Energy Modeling and Simulation	CH472	Energy Management and Audit				
	1										
	Project Management	CV325	Planning and Management	CV332	Operation Research	CV422	Financial Management				
Civil Engineering	Environmental Engineering	CV326 Solid Waste Management		CV333	Unit Operations for Liquid Waste/Effluent Treatment	CV423	Environmental Impact assessment and Climate Change				
	1						1 1				
	Data science	CS351	Descriptive Analytics	CS354	Predictive Analysis	CS461	Big Data Analytics				
Computer Engineering	Artificial Intelligence and Machine Learning	CS352	Artificial Intelligence	CS355	Machine Learning	CS462	Deep Learning				
	Cloud Computing	CS353	Cloud Computing Foundation	CS356	Cloud Native Application Development	CS463	Cloud Native DevOps				
	1										
Electronics Engineering	Robotics and Automation	ME352	Robot Fundamentals and Kinematics	EX371	Robot Dynamics and Control	EX471	AI in Robotics				

	Open Electives (OE)										
	Open Track Name		Semester V		Semester VI	Semester VII					
Programme Name		Course Code	Course Name	Course Code	Course Name	Course Code	Course Name				
	1			r							
Electronics &	Healthcare Technology	ET351	Fundamentals of Healthcare Technology	ET371	Healthcare Informatics	ET471	AI in Healthcare				
communication	Internet of Things	ternet of Things ET352 IoT Architecture		ET372	IoT Network & Protocols	ET472	Data Management and Analytics				
					•						
Information Technology	Computer Security	IT351	Cryptography and System Security	ography and System IT352 Cyber Security Forensid		IT461	Ethical Hacking & Cyber Laws				
					•						
	Computer Aided Engineering	ME351	Finite Element Analysis	ME361	Computational Fluid Dynamics	ME491	Advanced Fluid Dynamics				
Mechanical Engineering	Robotics and Automation	ME352	Robot Fundamentals and Kinematics	EX371	Robot Dynamics and Control	EX471	AI in Robotics				
	Automobile Engineering	ME354	Automobile System Design	ME364	Vehicle Dynamics	ME494	Autotronics and e-Vehicles				
Entrepreneurship Cell	Innovation and Entrepreneurship	HP311	Foundational Course in Entrepreneurship	HP312	Advanced Course in Entrepreneurship	HP411	Startup and Incubation				

MIT ACADEMY OF ENGINEERING, ALANDI

An Autonomous Institute Affiliated to

Savitribai Phule Pune University

Curriculum For First Year Bachelor of Technology

2019-2023

MIT Academy of Engineering An Autonomous Institute Affiliated to SPPU	COURS (RE\	COURSE STRUCTURE (REVISION 2019)					
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	:	2019-2020				
	RELEASE DATE	:	01/07/2019				
TIKST TEAK BACHLEOK OF TECHNOLOGT	REVISION NO.	:	1.0				

	SEMESTER: I (PART I)												
INDUCTION PROGRAM (Universal Human Values): 3 WEEKS													
	TE		NG E	E	XAMIN	IATION MA	N SCHE RKS	ME AN	ID	С			
		Но	our/We	ek	т	HEOR	Y	PRA	АСТ	T O	E		
TYPE	CODE	NAME	L	Р	Т	MSE	ESE	IA	T/P	DM	T A L	I T	
NSC1	AS105	Calculus and Differential Equations	3	-	1	20	40	40	50	-	150	4	
NSC2	AS106	Engineering Physics	3	2	-	20	40	40	50	-	150	4	
ESC1	EX102	Electrical and Electronics Engineering	3	2	-	20	40	40	50	-	150	4	
ESC2	ME104	Engineering Graphics	2	4	-	-	60	40	100	-	200	4	
ESC3	CS101	Logic Development-C Programming	1	4	-	-	40	-	100	-	140	3	
ESC4	ME105	-	4	-	-	-	-	40	60	100	2		
	-	TOTAL	12	16	1	60	220	160	390	60	890	21	

	SEMESTER: II (PART I)												
COURSE			TI S	TEACHING SCHEME			XAMIN	IATION MA	N SCHE RKS	ME AN	ID	C	
			н	our/We	ek	т	HEOR	Y	PR/	СТ	T O	E	
TYPE	CODE	NAME	L	Р	т	MSE	ESE	IA	T/P	DM	T A L	I T	
NSC3	AS107	Statistics and Integral Calculus	3	-	1	20	40	40	50	-	150	4	
NSC4	CH101	Science of Nature	3	2	-	20	40	40	50	-	150	4	
ESC5	CV102	Applied Mechanics	3	2	-	20	40	40	50	-	150	4	
HSS1	HP103/4/5	English for Engineers /(German/Japanese)	0	4	-	-	-	-	100	-	100	2	
ESC6	CS102	Applications Programming -Python	1	4	-	-	40	-	100	-	140	3	
ESC7	ME106	Design Thinking	-	4	-	-	-	-	40	60	100	2	
HSS2	HP106	Indian Constitution	1	1		-	-	-	-	-	Au	dit	
TOTAL			11	16	1	60	160	120	390	60	790	19	

Academy of Engineering An Autonomous Institute Affiliated to SPPU	COURSE STRUCTURE (REVISION 2019)					
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	:	2019-2020			
	RELEASE DATE	:	01/07/2019			
FIRST TEAR BACHELOR OF TECHNOLOGY	REVISION NO.	:	1.0			

	SEMESTER: I (PART II)													
	INDUCTION PROGRAM (Universal Human Values): 3 WEEKS													
	cc	TE	TEACHING SCHEME			XAMIN	IATION MA	I SCHE RKS	ME AN	D	С			
		Но	our/We	ek	т	HEOR	Y	PR/	ст	T O	E			
TYPE	CODE	NAME	L	Р	т	MSE	ESE	IA	T/P	DM	T A	U I T		
NSC1	AS105	Calculus and Differential Equations	3	-	1	20	40	40	50	-	150	4		
NSC4	CH101	Science of Nature	3	2	-	20	40	40	50	-	150	4		
ESC5	CV102	Applied Mechanics	3	2	-	20	40	40	50	-	150	4		
HSS1	HP103/4/5	English for Engineers /(German/Japanese)	0	4	-	-	-	-	100	-	100	2		
ESC3	CS101	Logic Development-C Programming	1	4	-	-	40	-	100	-	140	3		
ESC7	ME106	-	4	-	-	-	-	40	60	100	2			
	Т	OTAL	10	16	1	60	160	120	390	60	790	19		

	SEMESTER: II (PART II)												
COURSE			TE	TEACHING SCHEME			XAMIN	IATION MA	I SCHE RKS	ME AN	ID	C	
			Н	our/We	ek	т	HEOR	Y	PRA	АСТ	T O	E	
PE	CODE	NAME	L	Р	т	MSE	ESE	IA	T/P	DM	T A L	I T	
NSC3	AS107	Statistics and Integral Calculus	3	-	1	20	40	40	50	-	150	4	
NSC2	AS106	Engineering Physics	3	2	-	20	40	40	50	-	150	4	
ESC1	EX102	Electrical and Electronics Engineering	3	2	-	20	40	40	50	-	150	4	
ESC2	ME104	Engineering Graphics	2	4	-	-	60	40	100	-	200	4	
ESC6	CS102	Applications Programming -Python	1	4	-	-	40	-	100	-	140	3	
ESC4	ME105	Experimental Tools and Techniques	-	4	-	-	-	-	40	60	100	2	
HSS2	HP106	Indian Constitution	1	1						-	Au	dit	
TOTAL			13	16	1	60	220	160	390	60	890	21	

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Calculus and Differential Equations
OF TECHNOLOGY	COURSE CODE	AS105
	COURSE CREDITS	4
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS								
(HOUR	S/WEEK)		THEORY TUTORIAL/ PRESENTATION/ T				TOTAL			
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION				
3	1	20	40	40	50	NIL	150			

COURSE OBJECTIVES:

AS105.CEO.1: Classify and solve first order and first degree ordinary differential equations.

AS105.CEO.2: Categorize and inspect the applications of first order differential equations.

AS105.CEO.3: Inspect and solve linear differential equations of second and higher order.

AS105.CEO.4: Apply the concepts of partial differentiation.

AS105.CEO.5: Demonstrate an understanding towards the applications of partial differentiation.

AS105.CEO.6: Identify and classify first order linear and nonlinear partial differential equations.

COURSE OUTCOMES:

The students after completion of the course will be able to,

AS105.CO.1: Solve first order and first degree ordinary differential equations.

- AS105.CO.2: Analyze and solve real world phenomenon governed by first order ordinary differential equations.
- AS105.CO.3: Apply concepts of linear differential equations of second and higher order to solve different systems in engineering world.
- AS105.CO.4: Infer the problems based on properties of partial differentiation.
- AS105.CO.5: Examine the applications of partial differentiation.

AS105.CO.6: Solve and examine the solution of partial differential equations by theoretical methods.

THEORY	COURSE C	CONTENT		
UNIT 1	Ordinary Di	ifferential Equations of First Order and First Degree	6 HOURS	
Exact differential	rential equation equations, Diff	ns, Differential equations reducible to exact form-Integrating fa ferential equations reducible to linear form.	ctors, Linear	
UNIT 2	Applications First Degree	s of Ordinary Differential Equations of First Order and e	6 HOURS	
Orthogonal application	Trajectories, s- Mixing probl	Newton's law of cooling, Growth & Decay, Electric circuit lems.	cs, Chemical	
UNIT 3	Linear Diffe	erential Equation of Second Order and Higher Order	7 HOURS	
General so parameters Legendre's	lutions of linea , Equations red linear different	ar differential equations with constant coefficients, Method of lucible to linear differential equations with constant coefficients: ial equation, Simultaneous linear differential equations, Applica	variation of Cauchy and tions.	
UNIT 4	Partial Diffe	erentiation	7 HOURS	
Partial Diff functions, 1	erentiation: In Euler's Theorem	troduction, Chain rule, Total derivative, Change of variables, H n, Differentiation of Implicit functions.	Iomogeneous	
UNIT 5	UNIT 5 Applications of Partial Differentiation 6 HOUR			
Jacobian, J Functional	lacobian of Im dependence, M	plicit functions, Partial derivative of an implicit function usin Iaxima and Minima of functions of two variables.	g Jacobians,	
UNIT 6	Partial Diffe	erential Equations	7 HOURS	
Introductio equations s ential equa	n and formatic olvable by dire tions of first or	on of partial differential equation, solution of a partial different ect integration, Linear differential equations of first order, Non- der, Charpit's method.	ial equation, linear differ-	
TUTORI	AL			
TUTORI	AL NO.01		1 HOURS	
Exact diffe	rential equation	ns, Differential equations reducible to exact form-Integrating fac	ctors.	
TUTORI	AL NO.02		1 HOURS	
Linear diffe	erential equation	ns, Differential equations reducible to linear form.		
TUTORI	AL NO.03		1 HOURS	
Orthogonal	Trajectories, I	Newton's law of cooling, Growth & Decay		
TUTORI	AL NO.04		1 HOURS	
Electric cir	cuits, Chemical	l applications- Mixing problems.		

TUTORIAL NO.05		1 HOURS
General solutions of line parameters.	ear differential equations with constant coefficients, Method of	variation of
TUTORIAL NO.06		1 HOURS
Cauchy and Legendre's cations.	linear differential equation, Simultaneous linear differential equa	tions, Appli-
TUTORIAL NO.07		1 HOURS
Partial Differentiation: I	Introduction, Chain rule, Total derivative, Change of variables.	
TUTORIAL NO.08		1 HOURS
Homogeneous functions,	Euler's Theorem, Differentiation of Implicit functions.	
TUTORIAL NO.09		1 HOURS
Jacobian, Jacobian of In	aplicit functions, Partial derivative of an implicit function.	
TUTORIAL NO.10		1 HOURS
Functional dependence,	Maxima and Minima of functions of two variables.	
TUTORIAL NO.11		1 HOURS
Introduction and format equations solvable by dir	ion of partial differential equation, solution of a partial different rect integration.	tial equation,
TUTORIAL NO.12		1 HOURS
Linear differential equat method.	tions of first order, Non-linear differential equations of first order	er, Charpit's

- 1. Dr. B.V. Ramana, Higher Engineering Mathematics, 5 th edition, Tata McGraw Hill, 2017, ISBN: 978-0-07-063419-0
- 2. B.S. Grewal, Higher Engineering Mathematics, 44 th edition, Khanna Publications, 2018, ISBN: 978-81-933284-9-1

- G.B. Thomas, Maurice D. Weir, Joel R. Hass, Thomas' Calculus, 12 th edition, Pearson Education, 2002, ISBN: 9789332519091
- Erwin Kreyszig, Advanced Engineering Mathematics, 10 th edition, Wiley Eastern Ltd., 2015, ISBN: 13: 9788126554232
- 3. R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publishing house , 2010, ISBN: 8173194203.
- Peter V. O'Neil, Advanced Engineering Mathematics, 7 th edition, Cenage Learning, 2012, ISBN: 13: 9788131503102.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Engineering Physics
OF TECHNOLOGY	COURSE CODE	AS106
	COURSE CREDITS	4
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK) THEORY			TUTORIAL/	PRESENTATION/	TOTAL		
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	1	20	40	40	50	NIL	150

COURSE OBJECTIVES:

- AS106.CEO.1: Make students identify the basic concept of measurements and to formulate problems in physical and mathematical terms.
- AS106.CEO.2: Analyze and understand the behavior of light as a wave and get acquaint with different applications in Physics.
- AS106.CEO.3: Apply the concept of behavior of light and understand the polarization phenomena.
- AS106.CEO.4: Classify and understand the difference of classical mechanics and quantum mechanics.
- AS106.CEO.5: Derive the basic laws governing the motion of quantum particles.
- AS106.CEO.6: Apply the concept of quantum mechanics to different applications and supplement the reasoning.

COURSE OUTCOMES:

The students after completion of the course will be able to,

- AS106.CO.1: Evaluate the importance of order of all physical quantities and compare the order of size of different objects.
- AS106.CO.2: Apply the theoretical knowledge of optics to understand the physics behind engineering applications.
- AS106.CO.3: Apply that light is transverse in nature.
- AS106.CO.4: Demonstrate the necessity of quantum mechanics and the distinction between the domains of classical and quantum mechanics.

UNIT 1 6 HOURS Measurement and importance of span (order) of physical quantities

AS106.CO.5: Evaluate and apply the Schrödinger's equation to the motion of an electron orbiting

AS106.CO.6: Apply the concepts of Quantum Physics in different branches of engineering.

Concept of (i)significant numbers, (ii) accuracy versus precision (iii)error versus uncertainty (iv)systematic error versus random error (v) quantifying the uncertainty. Least-count of an apparatus, Methods to measure least-count with specific examples of vernier-calipers, screw-gauge, travelling microscope and spectrometer. Span (orders of magnitude) of prominent physical parameters. Length-scale and time-scale of specific physical phenomenon.

UNIT 2 **Optics** (Interference and Diffraction of Light)

Particle nature and wave-nature with examples of wave and particle behavior of light, Introduction to wave nature, Concept of thin film, Stokes' law of phase-change on reflection from a thin film, Thin film interference, Coating of lenses as an application of thin film interference, Interference in films of uniform and non-uniform thickness (with derivation), Applications of thin-film interference, Newton Ring Experiment and its applications, Diffraction as a particular case of interference.

UNIT 3 **Polarization of Electromagnetic wave** 6 HOURS

Polarization of electromagnetic wave, Production and analysis of polarized electromagnetic wave, Optical Activity, Specific Rotation due to optically active solutions, Application of Polarized light.

UNIT 4 Quantum Mechanics-I

round the shell.

THEORY COURSE CONTENT

Shortcomings or failure of Classical Mechanics with specific example of blackbody radiation, Planck's quantum law of blackbody radiation, Matter-waves, De-Broglie's concept of matter waves, Heisenberg's Uncertainty Principle, Wave-function, Physical significance of wave function.

UNIT 5 Quantum Mechanics-II

Schrodinger's equations, Time Dependent and Time Independent forms of Schrodinger Equations, Applications of Schrödinger Equation, Electron in an infinite potential well (rigid box), Electron in a finite deep potential well (non-rigid box) and concept of quantum mechanical tunneling, Application of electron in a potential well in case of Bohr's atomic model.

UNIT 6 LASER and Optical Fiber

Stimulated Absorption, Stimulated Emission of light and its comparison with spontaneous emission, Probabilities of stimulated absorption and emission of light (Einstein's coefficients), Principle and working of LASER (Ruby Laser), Application of LASER in optical fiber communication.

8 HOURS

5 HOURS

7 HOURS

7 HOURS

PRACTICAL							
PRACTICAL NO.01	Significant Figures	2 HOURS					
Determination of the mass	Determination of the mass of electron (me) upto specified significant numbers.						
PRACTICAL NO.02	Interference of Light Waves	2 HOURS					
Calculate the refractive in	dex of a given liquid using Newton Rings' Experiment.						
PRACTICAL NO.03	Diffraction of Light Waves	2 HOURS					
Determination of the line	density of a diffraction grating using Laser.						
PRACTICAL NO.04	Interference of Light Waves	2 HOURS					
Calculate the wavelength of	of Sodium light source using Michelson Interferometer.						
PRACTICAL NO.05	Phase and Phase Difference	2 HOURS					
Determination of the phas periodic motion.	e-difference between two given positions on the path of simple	pendulum in					
PRACTICAL NO.06	Bohr's Atomic Model	2 HOURS					
Verification of Bohr's atom	nic model using Frank and Hertz experiment.						
PRACTICAL NO.07	Polarization	2 HOURS					
Determination of the speci	ific rotation of a sugar solution of a given concentration.						
PRACTICAL NO.08	Stoke's Law	2 HOURS					
Calculation of wavelength	of a laser beam using Lloyd's mirror arrangement.						
PRACTICAL NO.09	Division of Amplitude of Light Waves	2 HOURS					
Determination of Radius of	of Curvature of a given planoconvex lens using Newton's Ring	s apparatus.					
PRACTICAL NO.10	Diffraction as a Particular Case of Interference	2 HOURS					
Calculation of wavelength	of different colors present in a white light.						

- 1. Richard. P. Feynman, R.B. Leighton, M.Sands, The Feynman Lectures on Physics: Volume-1-ISBN:978-81-85015-82-8
- 2. The Feynman Lectures on Physics: Volume-3-Richard. P. Feynman, R.B. Leighton, M.Sands, ISBN:978-81-85015-84-2

- 1. Alan S Morris, Butterworth Heinemann, Measurement and Instrumentation Principles,3rd Edition, Butterworth-heinmann,2001, ISBN 0750650818
- 2. Ajoy Ghatak ,Optics, 6th Edition Tata Mc Graw Hill Publishing Company. Ltd., 2016, ISBN-10-9339220900

- 3. Jenkins & White, Fundamentals of Optics, 4th Edition,Mc Graw Hill Science,2016, ISBN-0070853460.
- 4. Arthur Beiser, Shobit Mahajan, S. Rai. Choudhary ,Concepts of Modern Physics-,6th Edition, Mc Graw Hill Education (India) Pvt. Ltd., 2009, ISBN-10- 0070151555.
- 5. L I Schiff ,Quantum Mechanics,3rd Edition, Tata Mc Graw Hill Education (India) Pvt. Ltd.,ISBN-10- 0070856435, ISBN- 13- 9780070856431.
- PAM Dirac, Principles of Quantum Mechanics, 4th Edition, CBS publishers and Distributors, 2004, ISBN-10- 0195671074, ISBN- 13- 978019567107
- 7. D J Griffiths, Introduction to Quantum Mechanics,2nd Edition,Cambridge India ,2016,ISBN-9781316646513.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Electrical and Electronics Engineering
OF TECHNOLOGY	COURSE CODE	EX102
	COURSE CREDITS	4
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK) THEORY			TUTORIAL/	PRESENTATION/	TOTAL		
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	20	40	40	50	NIL	150

COURSE OBJECTIVES:

EX102.CEO.1: Impart knowledge of single-phase AC circuit and use of renewable energy systems.

EX102.CEO.2: Explain relations in three-phase systems and study power measurement methods.

EX102.CEO.3: Explain power supply components, electronic devices.

EX102.CEO.4: Summarize various Digital systems and application.

EX102.CEO.5: Build the knowledge of measuring system and signal conditioning circuits.

EX102.CEO.6: Get acquainted with different electrical machines.

COURSE OUTCOMES:

The students after completion of the course will be able to,

EX102.CO.1: Develop Renewable energy system (PV) & power factor improvement circuits.

EX102.CO.2: Distinguish behavior of three phase circuits & power measurement methods.

EX102.CO.3: Analyze analog circuits.

EX102.CO.4: Design Digital circuits.

EX102.CO.5: Demonstrate the use of Instrumentation system in various fields.

EX102.CO.6: Identify electrical machines used in typical domestic and industrial sector Application.

THEORY	COURSE CONTENT				
UNIT 1	AC Circuits	7 HOURS			
Energy Sce value, R-L, measures t Energy, cos Battery sel	nario, General structure of electrical power systems, A.C. fundamentals, RMS R-C,RLC series and parallel circuits, phasor diagram, power triangle and p o improve power factor and its effects on Power system and consumer. Wo ting of electricity, Application of Renewable Energy Systems, Design of PV syst ection and its series parallel connections	and average oower factor, rk, Power & em (offgrid),			
UNIT 2	Three Phase Circuit and Power Measurement	7 HOURS			
Three phas tween phas system, Dif of wiring, A	e voltage generation and its waveform, Star and delta balanced systems, Rela e and line quantities, phasor diagram, power in a three phase circuits, three ference between neutral and ground conductors, Safety measures in electrical s Active and Reactive Power measurement in single and three phase balanced systems	ationship be- phase 4 wire ystem, types stem.			
UNIT 3	Power Supply and Electronics Devices	7 HOURS			
Rectifiers a Structure a switch and	Rectifiers and Power Supplies, Elements of IC Regulated Power Supply, Clipper, Clamper. BJT - Structure and operation, CE, CB, CC configurations, biasing methods, DC Load Line, Transistor as a switch and Amplifier. Opto-electronic devices – Photo conductive cell, Photo Voltaic cell.				
UNIT 4	Digital Systems	7 HOURS			
Logic gates tractor, MU chronous &	, Boolean algebra, KMap, SOP representation. Combinational circuit Design: JX, DMUX, Comparator, Code converter Sequential circuit: Flip-Flop, Regist Asynchronous Counters. Microprocessor and Microcontroller based systems.	Adder, Sub- ers and Syn-			
UNIT 5	Measuring System	7 HOURS			
Elements o & LVDT, 0 ferential co	Elements of measuring system, Sensors & Transducers – Temperature, Flow, Pressure, Level, IR, Speed & LVDT, Op-Amp – IC 741 pin configuration, Op-amp parameters, Inverting, Non- Inverting & Dif- ferential configuration. Applications: Summing & Difference amplifier, Comparator, Voltage follower.				
UNIT 6	Electrical Machines	7 HOURS			
Construction regulation, Speed Cont Stepper mo	on of Transformer, principle of operation, EMF equation, VA Rating, Efficiency OC/SC Test on Transformer. Construction, principle of operation and types of rol, characteristics equation, PMDC, BLDC, Universal motor, Single phase Inductor, Application of Electrical Motors in domestic and Industrial sector.	and Voltage of DC motor, action Motor,			

PRACTICAL:							
PRACTICAL NO.01	Kirchhoff's laws and Superposition theorem	2 HOURS					
To develop a circuit for Kirchhoff's laws and Superposition theorem. To build and test both theorems.							
PRACTICAL NO.02	Single Phase Energy (Watt-hour) Measurement.	2 HOURS					
To measure energy and po To examine improvement To estimate and compare	ower factor. in the power factor. energy consumption with energy meter.						
PRACTICAL NO.03	R-L-C series A.C. Circuit	2 HOURS					
To calculate exact values of To justify the lagging and To find power losses in tot	of R , L and C for variations in X_L and X_C (3 cases) Leading nature for the three cases. cal R , L and C and verify with total power consumed.						
PRACTICAL NO.04	Verification of relation between Line and Phase quantities in Star and Delta Circuits.	2 HOURS					
To understand Line & Pha To connect Bulb load in S To connect Bulb load in D	To understand Line & Phase quantities and types of connection along with Three phase supply To connect Bulb load in Star connection and verify the relation between Line and Phase Quantities. To connect Bulb load in Delta connection and verify the relation between Line and Phase Quantities.						
PRACTICAL NO.05	Power Measurement in Three Phase Balanced Cir- cuit and Single Phase Circuit.	2 HOURS					
To measure active and rea To measure reactive power	active power by Two wattmeter method in three phase circuit. r by One wattmeter method in three phase circuit.						
PRACTICAL NO.06	Open Circuit & Short Circuit Test on a Single Phase Transformer	2 HOURS					
To find iron losses and no To find full load copper lo To determine efficiency an	load circuit parameters sses and Equivalent circuit parameters d regulation of transformer at various different loading conditi	ons.					
PRACTICAL NO.07	Speed Control of D.C. Shunt Motor	2 HOURS					
To vary field current and r To vary armature voltage Draw conclusion from bot	To vary field current and measure speed To vary armature voltage and measure speed Draw conclusion from both the methods through graphs.						
PRACTICAL NO.08	Step Angle Measurement of Stepper Motor.	2 HOURS					
To become familiar with t To calculate the step angle	he properties of Stepper Motor. e of motor.						
PRACTICAL NO.09	Electronics Components and Measuring Instruments	2 HOURS					
To study Passive component To test semi-conducting control to measure various electron	ents - Resistors, Capacitors & Inductor. omponents - Diode, BJT onic quantities using CRO, Function generator, DMM						

PRACTICAL NO.10	D.C. Regulated Power Supply	2 HOURS				
To design 12V/ 9V/ 5V IC based DC regulated power supply (Theoretically). To test and observe waveforms at various stages on CRO and measure the voltage using DMM.						
PRACTICAL NO.11	BJT as a Switch and Amplifier	2 HOURS				
To adapt BJT as a switch To adapt BJT as an Amp single stage CE amplifier.	– On/Off the LED at the output by switching BJT. lifter – Measure voltages and observe waveforms at input and	output of the				
PRACTICAL NO.12	Combinational Digital Circuits	2 HOURS				
To design and implement Half adder and Full adder (using Half adder). To design and implement 8:1 MUX using IC-74LS153 and verify its truth table.						
PRACTICAL NO.13	Sequential Digital Circuits	2 HOURS				
To design and implement Half adder and Full adder (using Half adder). To design and implement 8:1 MUX using IC-74LS153 and verify its truth table.						
PRACTICAL NO.14	OP-AMP Applications	2 HOURS				
To verify operations of inv To verify application of O To verify the application of	verting and non-inverting amplifier for various gain factors. P-AMP as summing and difference amplifier. of OP-AMP as voltage follower.					
PRACTICAL NO.15	Sensors and Transducer	2 HOURS				
To study and verify opera To study and verify the op	tion of LVDT. peration of Temperature sensors. (PT100, LM35)					
PRACTICAL NO.16	Design and Simulate using MULTISIM (Min.2)	2 HOURS				
To design a counter to dis To design a Flashing LED To design of Inverting/No	play 2-digit Decimal Number (00 to 99) on 7-Segment Display Display for a specific Pattern using MUX. n-Inverting Amplifier using Op-Amp IC-741 for a specific gain					
In addition to total 8 Experim	nents, two case study reports must be attached with Laboratory Co	ourse Record.				
TEXT BOOK						

- 1. Edward Hughes, "Electrical and Electronic Technology" 10th Edition, Pearson India, 2011, ISBN-13: 978-8131733660
- Thomas L. Floyd, "Electronics Devices & Circuits", 5th Edition, Pearson Education India, 1998, ISBN-13: 978-0136491385.
- A. Anand Kumar, "Fundamentals of Digital Circuits", 4th Edition, Prentice Hall of India, 2016, ISBN-13: 978-8120352681

- 1. V. N. Mittle and Arvind Mittal, "Basic Electrical Engineering", 2nd Edition, McGraw Hill Education, 2005, ISBN-13: 978-0070593572.
- D. P. Kothari, I. J. Nagrath, "Electric Machines", 4th Edition, McGraw Hill, 2010, 978-0070699670.
- 3. Paul Horowitz, Winfield Hill, "The Art of Electronics", 3rd Edition, Cambridge University press, ISBN-13: 978-0521809269.
- 4. Thomas E. Kissell, "Industrial Electronics", 3rd Edition, Prentice Hall of India, 2003, ISBN-13:9788120322608
- 5. B. H. Khan, "Non-Conventional Energy Resources", 2nd Edition, Tata McGraw Hill, 2009, ISBN-13: 978-0070142763.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Engineering Graphics
OF TECHNOLOGY	COURSE CODE	ME104
	COURSE CREDITS	4
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
2	4	NIL	60	40	60	40	200

COURSE OBJECTIVES:

ME104.CEO.1: To impart knowledge about principles/methods related to projections of one, two and three-dimensional objects.

ME104.CEO.2: To develop & apply visualization skills to simple Objects.

ME104.CEO.3: To expose students to computer aided drafting tools.

COURSE OUTCOMES:

The students after completion of the course will be able,

- ME104.CO.1: Develop and/or comprehend a simple engineering drawing in both First and Third angle orthographic projections.
- ME104.CO.2: Interpret engineering drawings.
- ME104.CO.3: Apply visualization skills to development of surfaces.
- ME104.CO.4: Analyze engineering drawings.
- ME104.CO.5: Decide annotations for two dimensional drawings.

ME104.CO.6: Create manual drawing & CAD data using SP46 standards.

THEORY COURSE CONTENT				
UNIT 1	Visual Think	ing and Solid Geometry	12 HOURS	
Essentials of engineering graphics including technical sketching, Projection of Line, Plane, Solid.				
UNIT 2 Orthographic Projections and Sectional Views			4 HOURS	
Reference I Views, Mis	Planes, Types of sing views.	f Orthographic Projections, Sectional Orthographic Projecti	ons, Sectional	
UNIT 3	Isometric Pro	ojections	4 HOURS	
Isometric V orthograph	View, Isometric S ic view and cons	Scale, Non-isometric Lines, construction of Isometric View f struction of isometric View of Pyramid, Cone, Sphere.	rom the given	
UNIT 4	Development	of Surfaces	2 HOURS	
Developme	nt of lateral surf	aces of simple and sectioned solids – Prisms, pyramids cylind	ers and cones.	
UNIT 5	Auxiliary Pro	ojections	2 HOURS	
Auxiliary 1	Planes- Auxiliary	y Vertical Plane, Auxiliary Inclined Plane, Symmetrical Au	uxiliary View,	
Unilateral .	Auxiliary View,	bilateral Auxiliary View		
UNIT 6 Freehand Sketching and Technical Drawing		4 HOURS		
Free hand sketching- FV & TV of standard machine part- Hexagonal headed nut and bolt, foundation bolts, shafts, keys, couplings, springs, screw thread forms, welded joints, riveted joints, nozzles.				
PRACTI Each Ass	CAL: ignment carrie	es 2 questions to be draws on A2 Size Drawing Sheet		
ASSIGN	MENT NO.1	Projection of Lines	4 HOURS	
Two Quest	ions on line incli	ned to both planes		
ASSIGN	MENT NO.2	Projection of Planes	2 HOURS	
Two Quest	ions on plane ind	clined to both planes		
ASSIGN	MENT NO.3	Projection of Solids	2 HOURS	
Two Questions on solid inclined to both planes				
ASSIGN	MENT NO.4	Orthographic Projections	4 HOURS	
Two Questions on Orthographic Projection of Simple Mechanical Element				
ASSIGN	MENT NO.5	Development of surface	4 HOURS	
Two Questions on Development of regular Solids				
ASSIGN	MENT NO.6	Isometric View	6 HOURS	
Two Quest	ions on Isometri	c view of Mechanical Element		

ASSIGNMENT NO.7	Auxiliary View	4 HOURS		
Two Questions on auxiliary view of Mechanical Element				
PRACTICAL: Each Assignment carries 2 questions to be drawn on 2D CAD software package				
PRACTICAL NO. 1 Absolute & incremental drafting 4 HOU				
Drawing of two sketches u	sing absolute and incremental commands			
PRACTICAL NO. 2	Draw commands, Modify commands, Array, fillet, offset com- mands	6 HOURS		
Drawing of four sketches u	using draw & modify commands			
PRACTICAL NO. 3 Project Drafting 2 HOURS				
Drafting of a small project using all drafting standards				
PRACTICAL: Each Assignment carries 2 questions to be drawn on 3D CAD software package				
PRACTICAL NO. 4	Sketching, Solid Modeling, Assembly	12 HOURS		
Modeling of five Mechanical models using 3D Software package				
PRACTICAL NO. 5	Project Modeling	4 HOURS		
Modeling of small Mechanical Project of Minimum three components				

- Dhanajay A. Jolhe, "Engineering Drawing with an introduction to AutoCAD", TMH Publishing Co Ltd, 5th Edition, 2012, (ISBN 13: 9780070648371)
- Basant Agarwal and C M Agarwal, "Engineering Drawing", TMH Publishing co Ltd, 2nd Edition 2013, (ISBN13: 978-1-259-06288-9)
- 3. K C John, "Engineering Graphics for Degree", PHI learning pvt. Ltd. New Delhi,2009, (ISBN: 97881-203-3788-6)
- 4. R. K. Dhavan, A TextBook of Engineering Drawing, S Chand and co ltd., New Delhi India, 5Th Edition, 2012, ISBN 13: 9788121914314

- 1. Luzadder, Warren J., Duff, John M, "Fundamentals of Engineering", Prentice Hall of India,11th Edition, 2010, (ISBN: 978-81-203-0885-5)
- Basudev Bhattacharya, "Machine Drawing includes Autocad Supplements", Oxford University Press India, First Edition, 2011, (ISBN 13: 9780198070771)
- K. Venugopal, Prabhu Raja V., "Engineering Drawing and Graphics", New age Publications, First Edition, 2008, (ISBN: 978-81-224-2457-7)
- 4. N B Shaha and B C Rana, "Engineering Drawing", Pearson Education, 2012, (ISBN: 9788131798058)

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Logic Development- C Programming
OF TECHNOLOGY	COURSE CODE	CS101
	COURSE CREDITS	3
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHING SCHEME			EXAMINATION SCHEME & MARKS					
(HOUR	S/WEEK)		THEORY PRACTICAL			TOTAL		
LECTURE	PRACTICAL	MSE	ESE	IA	MSE	ESE	IA	
1	4	NIL	40	NIL	30	30	40	140

$\mathbf{PRE}\text{-}\mathbf{REQUISITE}: \mathrm{NIL}$

COURSE OBJECTIVES:

CS101.CEO.1: Develop programming skills using the fundamentals and basics of C Language.

CS101.CEO.2: Enable effective usage of arrays, structures, functions, pointers and to implement the memory management concepts.

CS101.CEO.3: Teach the issues in file organization and the usage of file systems.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CS101.CO.1: List the various data types, control structures and looping structures supported by C language.

CS101.CO.2: Differentiate between various data types supported by C language.

CS101.CO.3: Implement the solutions for various algorithms in C language.

CS101.CO.4: Analyze various parameter passing methods to functions in C language.

THEORY COURSE CONTENT			
UNIT 1	Fundamentals of C Language	2 HOURS	
Overview of C, Character set, Constants, Variables and Keywords, Data types (Primitive and Derived), Operators (arithmetic, relational and logical operators, increment and decrement operators, conditional operator, bit-wise operators, assignment operators) and Expressions (Type Conversion, precedence and order of evaluation), C Storage Classes, Managing Input and Output Operations, A structure of C Program, C Proprocessor, C Magra, Compilation, Execution, Debugging and Testing of C program			
UNIT 2	Control Structures	2 HOURS	
Case Contra statement, finite & inf	rol structure- Switch Case Statements, GOTO statement, Loop Control Structure- do while statement, for statement, odd loop, nesting of loops, break and continuinite Loop.	icture- while ie statement,	
UNIT 3	Arrays and Functions	3 HOURS	
 Arrays: Array Declaration and Initialization, Bounds Checking, Array arithmetic, One dimensional arrays and multi-dimensional Arrays, Strings - Standard Library String Functions, Array of strings. Functions: Function definition and prototype, Scope Rule of Functions, Calling Conventions, Passing Values between Functions - Call by Values and Call by References, Recursive functions, Passing Array Elements to a Function 			
UNIT 4	Pointers	3 HOURS	
Pointers and Addresses, Pointer Notation & Arithmetic, Pointer to array, Array of pointers, Pointer to a function, Passing pointers as function arguments, Strings and Pointers, Structures and Pointers.			
UNIT 5	User Defined Data Types	1 HOURS	
Structures & Union: Declaration of Structure and Union, Difference between Structure and Union, Accessing Structure Elements, How Structure Elements are Stored, Array of Structures.			
UNIT 6	File Handling	2 HOURS	
File Operations-open, read, write, append, delete, Error Handling, File Opening Modes Using command line argument(argc and argv), line input and output operations, Miscellaneous Functions.			

PRACTICAL NO.01

- Write a program in C to display "Hello World"
- Write a menu driven program in C to display addition, subtraction, multiplication, division of two numbers

PRACTICAL NO.02

2 HOURS

- Write a program in C to display the quotient and remainder after the division of two numbers
- Write a menu driven program in C to demonstrate the use of left shift, right shift, and, or, xor operators

PRACTICAL NO.03

- Write a menu driven program in C to demonstrate the use of mathematical functions supported by math.h library
- Write a program in C to display the grade obtained by the student in a course. The input will be the marks obtained and the output will be the grade obtained

PRACTICAL NO.04

- Write a program in C to display first N numbers on the screen using while, do while and for loop
- Write a program in C to display first N number in reverse order on the screen using while, do while and for loop

PRACTICAL NO.05

Write a program in C display various patterns using *

PRACTICAL NO.06

- Write a program in C to display the addition of N numbers stored in an array
- Write a program in C to copy the array of N numbers into another array in reverse order
- Write a program in C to display the minimum and maximum element in an array

PRACTICAL NO.07

- Write a program in C to display the prime numbers within a given range
- Write a program in C to display the fibonacci series within a given range

PRACTICAL NO.08

Write a menu driven program in C to perform addition, subtraction, division and transpose of matrices

PRACTICAL NO.09	2 HOURS	

- Write a program in C to convert every lowercase letter to uppercase letter and vice versa in a given string
- Write a program in C to implement the string functions using the standard library functions supported by string.h like: string length, string copy, string reverse, string concatenate, string compare, sub string

PRACTICAL NO.10

- Write a program in C using functions to display addition, subtraction, multiplication, division of two numbers
- Write a program in C using functions to display the minimum and maximum element in an array

PRACTICAL NO.11

Write a program in C using functions to implement the string functions without using the standard library functions supported by string. h like: string length, string copy, string reverse, string concatenate, string compare, string palindrome

PRACTICAL NO.12

- Write a program in C using functions and pointers to display addition, subtraction, multiplication, division of two numbers
- Write a program in C using function and pointers to swap two numbers

PRACTICAL NO.13

Write a program in C using function and pointers to demonstrate the use of pointer arithmetic by taking input in an array

PRACTICAL NO.14

- Write a program in C using recursion to display the factorial of a number
- Write a program in C using recursion to display fibonacci series within a given range

PRACTICAL NO.15		2 HO	U
-----------------	--	------	---

- Write a program in C to accept the information of single student and store it in structure and display the same
- Write a program in C to accept the information of students and store it in array of structure and display the same

2	HOURS

2 HOURS

2 HOURS

2 HOURS

2 HOURS

RS

	2 HOURS
C to display Semester Grade Point Average (SGPA). Input will C to demonstrate the concept of union	be stored in
	2 HOURS
read a single line from the file using functions like fgetc, fgets	, fscanf, and
	2 HOURS
rite a single string in a file using functions like fputc, fputs, fprin	atf and fwrite
	2 HOURS
lisplay contents of whole file on the screen	
	2 HOURS
read and write the record stored in structure from file	
	2 HOURS
mplement student information system using array of structures	
	2 HOURS
mplement Linear Search and Binary Search	
	2 HOURS
check whether a given matrix contains a saddle point	
	2 HOURS
mplement union and intersection of two sets	
	C to display Semester Grade Point Average (SGPA). Input will C to demonstrate the concept of union read a single line from the file using functions like fgetc, fgets rite a single string in a file using functions like fputc, fputs, fprin lisplay contents of whole file on the screen ead and write the record stored in structure from file mplement student information system using array of structures mplement Linear Search and Binary Search check whether a given matrix contains a saddle point mplement union and intersection of two sets

- 1. E. Balguruswamy , "Programming in ANSI C" , Tata Mc-Graw Hill
- 2. Yashvant Kanitkar, "Let Us C" BPB Publication
- 3. "Programming With C", Schaum Series

- 1. Kernighan and Ritchie , "The 'C' programming language" , Prentice Hall
- 2. V. Rajaraman , "Computer Programming in 'C' " , Prentice Hall
- 3. R.G. Dromey , "How to solve it by Computer", Pearson Education
| COURSE SYLLABUS | | | |
|-----------------|---|--|--|
| W.E.F | 2019 - 2020 (R2019) | | |
| COURSE NAME | Experimental Tools
and Techniques | | |
| COURSE CODE | ME105 | | |
| COURSE CREDITS | 2 | | |
| REVISION NO | 1.0 | | |
| | COURSE NAME
COURSE CODE
COURSE CREDITS
REVISION NO | | |

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK)		THEORY TU:			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	4	NIL	NIL	40	60	NIL	100

COURSE OBJECTIVES:

ME105.CEO.1: Introduce different tools and study various measurement techniques.

ME105.CEO.2: Study different parts of the system along with its functions and applications.

ME105.CEO.3: List various tools used for the said application.

ME105.CEO.4: Identify the function of various parts of the system.

ME105.CEO.5: Impart comprehensive knowledge for selection of appropriate techniques to the said application.

ME105.CEO.6: Apply the knowledge to find the solution for basic engineering problems.

COURSE OUTCOMES:

The students after completion of the course will be able to,

ME105.CO.1: Recall the tools required for the measurements.

ME105.CO.2: Summarize the application of various engineering tools used.

ME105.CO.3: Identify the right tools for selected purpose.

ME105.CO.4: Inspect various parts of the system.

ME105.CO.5: Justify the most appropriate technique which can be compatible with the existing environment.

ME105.CO.6: Develop the system which will give appropriate solution to the identified problem.

PRACTICAL:

PRACTICAL NO.01	Information Technology/Computer Engineering (Any 6 Practicals from the following list)	12 HOURS					
 Study and analysis of Installation of various setup for verification 	of various components on the motherboard of a standard desk us components like hard disk drive on the motherboard and che	ctop computer eck the system					
3. Formatting the hard the system dual boo	disk drive and installation of Windows and Linux operating s t	system making					
4. Study of various net	work components like switch, Router and configure the device	es.					
5. Crimping of Unshiel	ded Twisted Pair cable. (Cat-6)						
6. Study of TCP/IP St	tack, and configure as well as develop a Local Area Network.						
7. Configuration of Net	twork Monitoring tool and checking the results						
8. Installation of DHC	P server and checking the results.						
9. Installation of web s	erver and checking the results.						
10. Configuration of MS	Access and Deploying Access 2007 Runtime-Based Solutions						
11. Study and usage of	Google Tools (creating Forms, Blog).						
12. Using the Google for	rm with add on, create a PDF file of the form.						
13. Designing a static H	TML page						
14. Uploading the pages	s using FTP server on a web site						
15. Deploy a simple web	o site using LAMP server						
16. Creation of a web si	te using Google sites.						
PRACTICAL NO.02	Electronics Engineering (Any 06 practical's from the following list)	12 HOURS					
1. Study of basic electr	conics component and Switches.						
2. PCB and Soldering	Tools and Technique.						
3. Relay and application	on.						
4. Domestic wiring for	Extension Board and Inverter.*						
5. Load test of D.C. se	ries motor.*						
6. Brake test on D.C. Shunt motor.*							
7. Load test on 3-phase	e induction motor.						
8. V-I Characteristics of	of Thyristor & measurement of holding & latching current						
9. V-I Characteristics of	of MOSFET.						
10. V-I Characteristics of IGBT.							
11. V-I Characteristics of TRIAC.							
12. Solar cell and applic	12. Solar cell and application (Generation of Energy).						
13. Speed control of DC	Motor (Toy Motor)						
14. Actuators and application (Electrical and Mechanical).							

- 15 Study of Virtual Instrumentation.
- 16 Open IT : Optical Mouse, Cathode Ray Oscilloscope, Study of Power Supply PA System, CD Player, TV, Microwave oven (Any Two)

PRACTICAL NO.03 Mechanical Engineering (Any 6 practicals from the 12 HOURS following list)

- 1. Linear and angular measurements.
- 2. Measurement of transmission ratio in Belt drive, Chain drive, and Gear drive.
- 3. Measurement of RPM of rotating machine using contact and non-contact type tachometer.
- 4. Types of mechanism and making any one mechanism containing four links using cardboard.
- 5. Measurement of Barometric pressure, introduction to pressure measuring devices like bourdon tube pressure gauge and manometer. Fabrication of simple type manometer.
- 6. Introduction to temperature measuring devices. Making and calibration of thermo couple and using it with temperature indicator.
- 7. Measurement of Relative humidity of air in the lab.
- 8. Measurement of hardness of Steel and Aluminum.
- 9. Measurement of stiffness of helical spring (compression or tension)
- 10. Servicing of 2 wheeler and 4 wheeler system.
- 11. Study of various components of automobile system.
- 12. Open IT: Mixer or kitchen machine, Refrigerator, Boiler and accessories thermal power plant (Mini), Two stroke and four stroke engine, Introduction to threaded fasteners and joints using threaded fasteners. Bearing and its lubrication, Bicycle /Two wheeler/ 4 wheeler(Any Two)

PRACTICAL NO.04	Chemical Engineering (Any 3 practicals from the fol-	6 HOURS
	lowing)	

- 1. Determination of specific gravity of liquid
- 2. Study of molecular diffusion
- 3. Liquid –liquid extraction: Separation of one liquid component from the solution.
- 4. Solid-liquid separation from filtration
- 5. Membrane Separation process
- 6. Fuel from Plastic
- 7. Demonstration of mechanical operation models.
- 8. Plate type heat exchanger
- 9. Water purifier (Household)

PRACTICAL NO.05 Civil Engineering (Any 3 Practicals from the following) 6 HOURS

- 1. To find the area and included angle of given plot and fix boundary from given plan.
- 2. To determine the level difference between 5 points with level tube and determine height of tower with trigonometry.
- 3. To draw the plan of given parcel of land to a given scale.
- 4. To draw line diagram of household water supply line and sewage line with list of materials used.
- 5. To draw line diagram of rain water harvesting unit with all details and its importance.
- 6. To make report on daily water requirement in public building and its waste water disposal, and reuse.
- 7. To identify and make report on the earthquake resisting structural members of building and its role.
- 8. To demonstrate the life saving do s and don'ts during the different natural calamities.
- 9. To demonstrate the dos and donts after different natural calamities.

Assessment Common to all branches

4 HOURS

TEXT BOOK

- 1. Bruce Hallberg, "Networking A Beginners Guide" , 4th edition, Tata McGraw-Hill,2005, ISBN 0-07- 060791-5
- R.S. Khandpur, "Printed Circuit Boards: Design, Fabrication, Assembly and Testing", Tata McGraw-Hill Education, 2005, ISBN 0070588147, 9780070588141.
- 3. S R Dara, "Engineering Chemistry", 5th edition, S.Chand , ISBN 81-219-0359-9

- Mackenzie L. Davis, Water and Wastewater Engineering, 13th edition, Tata McGraw-Hill, ISBN 978-1-25-906483-8.
- 2. R. S. Khurmi, J. K. Gupta, Theory of Machines, 14th edition, S. Chand, ISBN 81-219-2524-X.
- 3. Philip Wankat, Seperation Process Engineering , 3rd edition, Pearson, ISBN 978-93-325-2484-2.
- 4. N.V. Ragvendra, L. Krishnamurthy, Engineering Metrology and Measurements, Oxford University Press, ISBN 978-0-19-808549-2.
- 5. Dr. Vinod Hosur, Earthquake- Resistant Design of Building Structures, Wiley, ISBN 978-81265-3859-1.
- 6. M. S. Shetty, Concrete Technology, S. Chand, 2008, ISBN 9788121900034.

COURSE SYLLABUS			
W.E.F	2019 - 2020 (R2019)		
COURSE NAME	Statistics and Integral Calculus		
COURSE CODE	AS107		
COURSE CREDITS	4		
REVISION NO	1.0		
	COURSE NAME COURSE CODE COURSE CREDITS REVISION NO		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY TUTO			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	1	20	40	40	50	NIL	150

COURSE OBJECTIVES:

AS107.CEO.1: Study different statistical methods for solving problems.

AS107.CEO.2: Analyze different probability distribution functions.

AS107.CEO.3: Extend the basic concepts of integration for evaluation of complex integration problems.

AS107.CEO.4: Categorize and use equation of curves to trace the given curve.

AS107.CEO.5: Demonstrate an understanding towards evaluating multiple integrals.

AS107.CEO.6: Relate and examine the applications of multiple integrals.

COURSE OUTCOMES:

The students after completion of the course will be able to,

AS107.CO.1: Assess statistical problems.

AS107.CO.2: Solve the probability distribution problems.

AS107.CO.3: Evaluate complex integrals.

AS107.CO.4: Sketch curves by analyzing the given equation of curves.

AS107.CO.5: Evaluate the multiple integrals.

AS107.CO.6: Apply the knowledge of multiple integrals to solve engineering problems.

THEORY	THEORY COURSE CONTENT				
UNIT 1	Statistics	6 HOURS			
Measures of kurtosis, co	of central tendency, standard deviation, coefficient of variation, moments, s prrelation(Karl Pearson's coefficient of correlation) and regression	kewness and			
UNIT 2	Probability	6 HOURS			
Probability	, probability density function, probability distribution: Binomial, Poisson, Nor	rmal			
UNIT 3	Integral Calculus	7 HOURS			
Reduction	formulae, Gamma function, Beta function, Differentiation under integral sign.				
UNIT 4	Curve Tracing and Rectification	7 HOURS			
Tracing of Cartesian,	Curves: Cartesian curves, Parametric curves, Polar curves. Rectification: Re Parametric and Polar curves	ctification of			
UNIT 5	Multiple Integrals	7 HOURS			
Double Integration, Evaluation of Double Integration, Change of order of integration, Integration by transforming Cartesian to Polar Coordinate system, Triple integration, Integration by transforming to spherical and cylindrical polar coordinates					
UNIT 6	Applications of Multiple Integrals	6 HOURS			
Applications of multiple integrals to find Area, Volume, Centre of Gravity, and Moment of Inertia					
TUTORIAL: Problem solving session					

TUTORIAL: Problem	solving session				
TUTORIAL NO.01		1 HOURS			
Measures of central tend	ency, standard deviation, coefficient of variation				
TUTORIAL NO.02		1 HOURS			
Moments, skewness and	kurtosis				
TUTORIAL NO.03		1 HOURS			
Correlation and regression	n				
TUTORIAL NO.04		1 HOURS			
Probability, probability	density function, Probability distribution: Binomial				
TUTORIAL NO.05		1 HOURS			
Probability distribution:	Poisson, Normal.				
Reduction formulae, Gamma function					
TUTORIAL NO.06		1 HOURS			
Beta function, DUIS Ru	le1 & 2.				

TUTORIAL NO.07		1 HOURS		
Tracing of Cartesian, Po	lar and Parametric curves.			
TUTORIAL NO.08		1 HOURS		
Rectification of Cartesia	n, Polar and Parametric curves.			
TUTORIAL NO.09		1 HOURS		
Double Integration, Evaluation of Double Integration, Change the order of integration, Integration by transforming Cartesian to Polar Coordinate system				
TUTORIAL NO.10		1 HOURS		
Triple integration, Integration by transforming to spherical and cylindrical polar coordinates. Appli- cations of multiple integrals: To find Area, Volume				
TUTORIAL NO.11		1 HOURS		
Applications of multiple integrals: To find Centre of Gravity of an arc, plane lamina and a solid.				
TUTORIAL NO.12		1 HOURS		

Applications of multiple integrals: To find Moment of Inertia about an arc, plane and solid

TEXT BOOK

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10 th edition, Wiley Eastern Ltd, 2015, ISBN: 9788126554232, 8126554231,
- 2. B.S. Grewal , Higher Engineering Mathematics , 39th edition, Khanna Publications, 2005 , ISBN: $\,$ 81-7409- 195-5

- G.B. Thomas & R.L.Finney, Calculus, 9th edition, Pearson Education, 2002, ISBN: 81-7758-325-5.
- 2. Dr. B.V. Ramana ,Higher Engineering Mathematics,4 th edition, Tata McGraw Hill,2016, ISBN: 978-0-07-063419-
- 3. R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publishing house,2002,ISBN No.0849324173
- 4. Peter V. O'Neil , Advanced Engineering Mathematics,7th Edition , Cenage Learning ,2012, ISBN-13: 9788131503102.
- 5. Dennis G. Zill & Warren S. Wright , Advanced Engineering Mathematics , 4th edition , Jones and Bartlett Publishers, 2011, ISBN-10: 0-7637-7966-0, ISBN – 13: 978-0-7637-7966-5.
- 6. Douglas C. montgomery , George C runger , Applied statistics and probability for engineers, 5 th edition, wiley , 2012, ISBN No: 9788126537198, 8126537191 .
- 7. Richard A Johnson, Irwin Miller, John freund ,Miller & Freund's Probability and statistics for engineers 8th edition, Pearson, 2011, ISBN no:978-93325-5041-4.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Science of Nature
OF TECHNOLOGY	COURSE CODE	CH101
	COURSE CREDITS	4
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK)		THEORY TUTORL			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	20	40	40	50	NIL	150

COURSE OBJECTIVES:

CH101.CEO.1: Make students conversant with basic Biology regarding the life processes.

CH101.CEO.2: Study biology and engineering as biologically inspired technologies like designs in nature, bioenergetics, bioprocesses, biomaterials, biomechanics, bioinstrumentation.

CH101.CEO.3: Outline the technology involved in improving quality of water for its industrial use.

CH101.CEO.4: Illustrate the basic principles, instrumentation & applications of analytical techniques.

CH101.CEO.5: Get familiarize with the new concepts of Nano Science and Technology.

CH101.CEO.6: Define the basic aspects and applications of polymers, biomaterials & composites.

COURSE OUTCOMES:

The students after completion of the course will be able to,

- CH101.CO.1: Explain natural biological processes and their technical aspects in view of optimizing Engineering solutions.
- CH101.CO.2: Explain important biological inventions that changed the human life and their impact on engineering.
- CH101.CO.3: Identify different methodologies for water quality analysis for industrial application.

CH101.CO.4: Apply basic concepts of analytical techniques for analysis of various chemical compounds.

CH101.CO.5: Apply the knowledge of nano science for betterment of the society.

CH101.CO.6: Categorize the different engineering materials and to solve engineering problems.

THEORY COURSE CONTENT

UNIT 1 Introduction to Science of Nature

The basics of science of nature. Exploring science in nature, specially symmetry, spiral, golden ratio, pattern and fractal. The phenomenon observed in nature viz., Physical, Chemical and Biological. Case studies and Applications. The diversity and commonality of cells, protein structure and function, basic molecular genetic mechanisms, bio membranes and cell architecture, transport of ions and small molecules across Cell membranes, cellular energetics, cell birth, lineage and death.

UNIT 2 Applications of Biology

Physiologic Systems - An Outline of Cardiovascular Structure and Function, Endocrine System, Nervous System, Vision System, Defense mechanisms in plants and animals. Introduction to Bio Sensors, Performance Factors, Factors Affecting the Performance of Sensors, Areas of Application. Biological Sensing Elements, Biological transducers. Discovery and Innovations in applications of Biology.

UNIT 3 The Role of Chemistry for Engineers

(A) **Introduction:** This section is an introduction to chemistry and chemical methods for engineering students. It describes how chemistry is used in engineering and how chemical principles aid engineers in the choice of materials for a particular application. Principles of Green chemistry are reviewed. The classification of separation methods used for mixtures.

(B) **Periodic Table:** This section covers the names and symbols of the elements. The basic structure of the atom is reviewed including an explanation of isotopes. A discussion of the atomic structure describes electronic shells, subshells, their quantum numbers, orbital shapes, electron filling order, and the determination of the complete electron configuration of the elements. General description of the modern periodic table. Correlation between the valence electron configurations and the chemical properties of the elements. The periodic trends according to the position of the elements in the periodic table.

UNIT 4 Chemical Bonding - The Formation of Materials

(A) **The Formation of Materials:** This section covers chemical bonding and its effect on the chemical properties of the elements. Ionic bonding & covalent bonding are compared in terms of the octet rule and valence bond theory. Polar and non-polar covalent bonds. Molecular orbital theory is introduced to explain magnetism, bond order and hybridization helpful in Carbon chemistry. Intermolecular forces, including hydrogen bonding, are discussed with a special Case Study focusing on the special properties of water.

(B) **Engineering Materials:** This section covers the Resources of Natural Materials, Introduction to Material Sciences viz. Polymers, Specialty polymers, Biomaterials, Nano materials and Smart materials with their examples and applications.

UNIT 5 Chemical Analysis and Instrumentation

Schrodinger's equations, Time Dependent and Time Independent forms of Schrodinger Equations, Applications of Schrodinger Equation, Electron in an infinite potential well (rigid box), Electron in a finite deep potential well (non-rigid box) and concept of quantum mechanical tunneling, Application of electron in a potential well in case of Bohr's atomic model.

7 HOURS

7 HOURS

6 HOURS

8 HOURS

6 HOURS

UNIT 6	Water Treatment and Effluent Management	5 HOURS

This chapter covers types of impurities in water & the conventional water treatment methods. Hardness, Alkalinity and Chloride content of water, its causes, types and volumetric methods for their determinations are reviewed along with numerical. Various water softening & treatment methods which includes filtration methods by Carbon adsorption, ion-exchange methods and membrane techniques are explained

PRACTICAL: Any 8 Experiments					
PRACTICAL NO.01 Distillation 2 HO					
Separation of two miscible liquids using distillation process					
PRACTICAL NO.02 Polymerization 2 HOUR					
Synthesis by condensation polymerization reaction					
PRACTICAL NO.03	Nano Particle	2 HOURS			
Synthesis of nano particles using reduction method					
PRACTICAL NO.04	pH Metry	2 HOURS			
Determination of the dissociation constant of a weak acid using pH meter					
PRACTICAL NO.05	Paper Chromatography	2 HOURS			
Separation of inorganic cations by paper chromatography					
PRACTICAL NO.06	TLC	2 HOURS			
Separation of organic com	pounds by TLC				
PRACTICAL NO.07	Conductometry	2 HOURS			
Conductometric titration :	for mixture of acids.				
PRACTICAL NO.08	Colorimetry / Spectrophotometry	2 HOURS			
Absorption studies					
PRACTICAL NO.09	Hardness of Water	2 HOURS			
Determination of Hardnes	s of water by EDTA method				
PRACTICAL NO.10	Alkalinity	2 HOURS			
Determination of alkalinit	y of water by neutralization titration				
PRACTICAL NO.11	Adsorption Studies	2 HOURS			
Water purification by activ	vated charcoal				

PRACTICAL NO.12	Physical Phenomenon	2 HOURS			
Case Studies of Physical Phenomenon					
PRACTICAL NO.13	Chemical Phenomenon	2 HOURS			
Case Studies of Chemical Phenomenon					
PRACTICAL NO.14	Biological Phenomenon	2 HOURS			
Case Studies of Biological Phenomenon					

TEXT BOOK

- 1. Jain & Jain, "Engineering Chemistry", 16th Edition, Dhanpat Rai Publications company,2015, ISBN: 978-93-5216-000-6
- S.M. Khopkar, "Basic Concept of Analytical Chemistry", 3rd edition, New Age International (P) Ltd., 2008, ISBN-10: 81-224-2092-3; ISBN-13: 978- 81-224-2092-0
- 3. Dr. B. S. Chauhan , "Engineering Chemistry", 3rd Edition, University Science Press (Laxmi Publications Pvt. Ltd).,2009, ISBN: 978-81-318-0579-4.
- 4. Lodish H, Berk A, Zipursky SL, et al., "Molecular Cell Biology", 5th Ed., W. H. Freeman publications, 2000.
- 5. Palsson B.O. and Bhatia S.N., "Tissue Engineering", Pearson, 2009,
- Brian R. Eggins, "CHEMICAL SENSORS AND BIOSENSORS", JOHN WILEY & SONS, LTD, 2004.

- Jeffrey S. Gaffney and Nancy A. Marley General Chemistry for Engineers, Elsevier, 2018, ISBN: 978- 0-12-810425-5
- Skoog, West, Holler, Crouch, "Fundamentals of Analytical Chemistry", 8th Edition Cengage Learning, 2009, ISBN-13: 978—81-315-0051-4, ISBN-10: 81-315-0051-9
- Willard, Merritt, Dean and Settle, "Instrumental Methods of analysis (Chemistry)", 6th edition, Wadsworth Publishing Co., 1988, ISBN-10: 0534081428, ISBN-13: 978-0534081423.
- Donald R. Askeland, Pradeep Fulay, W. J. Wright, "The Science & Engineering of Materials", 6th Edition, Cengage Learning, 2010, ISBN: 0495668028.
- 5. O. G. Palanna, "Engineering Chemistry", 1st Edition, Tata McGraw Hill education Pvt. Ltd., 2009, ISBN-13: 978-0-07-014610-5, ISBN (10): 0-07-014610-1.
- 6. Pradeep T., "A Text Book of Nanoscience and Nanotechnology", Tata McGraw Hill, New Delhi, 2012.
- Reece, J. B., Taylor, M. R., Simon, E. J. and Dickey, J. L. (2013) Campbell Biology: Concepts and Connections (Seventh Edition) (Pearson) ISBN 1292026359

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Applied Mechanics
OF TECHNOLOGY	COURSE CODE	CV102
	COURSE CREDITS	4
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	,	THEORY		TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	30	30	40	50	NIL	150

COURSE OBJECTIVES:

CV102.CEO.1: Classify force systems and explain the conditions of equilibrium.

CV102.CEO.2: Illustrate laws of friction.

CV102.CEO.3: Demonstrate the concepts of Centroid and moment of inertia.

CV102.CEO.4: Describe kinematic parameters of motion.

CV102.CEO.5: Make use of laws of motion for kinetics.

CV102.CEO.6: Explain energy and momentum methods.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV102.CO.1: Determine the resultant and support reactions.

CV102.CO.2: Equilibrium Analysis of bodies involving frictional forces.

CV102.CO.3: Evaluate Centroid of bodies and moment of inertia of sections.

CV102.CO.4: Identify the type of motion and its kinematic parameters.

CV102.CO.5: Analyze the motion under action of constant and variable forces.

CV102.CO.6: Apply energy and momentum methods for kinetics problems.

THEORY	COURSE CONTENT	
UNIT 1	Fundamentals of Statics	8 HOURS
Basic conce and couple Equilibrium Further R	epts in mechanics, Fundamental principles/laws of mechanics, Force, moment, Resolution and composition of forces, Resultant of coplanar forces, Free boom of coplanar forces, Applications to simple beams and cables. Reading: *Self study-Application to jib crane.	nt of a force dy diagrams,
UNIT 2	Friction	6 HOURS
Introductio angle of frid ladder frict Further R	n to friction, Types of friction, Laws of friction- coefficient of friction, Theory ction, angle of repose, cone of friction, Engineering applications - Block and we ion, Belt Friction. Leading: *Self study-Screw friction.	y of friction- edge friction,
UNIT 3	Properties of Surfaces	6 HOURS
2D objects perpendicu Further R	, Concept of area moment of inertia, Radius of gyration and its significance, lar axis theorems, Moment of inertia of standard and composite 2D figures. Leading: *Self study- Mass moment of Inertia.	Parallel and
Basic conce	epts in kinematics, Rectilinear motion with uniform and variable acceleration, N	Iotion under
Gravity, Me Further R	otion curves, Curvilinear Motion in Rectangular and path coordinates, Project Reading: *Self study- Curvilinear motion in polar coordinates.	tile motion.
UNIT 5	Kinetics- Force and Acceleration	6 HOURS
Newton's se equilibrium curvilinear Further R	econd laws of Motion, Free body diagram equation- Rectilinear motion, Concept. Motion of connected bodies, Equations of motion in rectangular and path comotion. Reading: *Self study- Free Vibrations.	t of dynamic ordinates for
UNIT 6	Kinetics Energy and Momentum	6 HOURS
Concepts of of work and Impulse-mo- ficient of re	f Work, power and energy, Work done by gravity, spring and frictional force d Energy, Conservation of mechanical energy, Concept of Impulse and linear pomentum theorem, Conservation of linear momentum, Collisions- Types of coll stitution, Applications to vehicles and sports.	es, Principle momentum, lisions, Coef-

Further Reading: *Self study- Space mechanics.

PRACTICAL: Any 8 Experiments						
PRACTICAL NO.01	Basic Principles/Laws 2 HOURS					
o verify basic laws of mechanics.						
ACTIVITY NO.01	Exploring Scientific Calculator	2 HOURS				
To complete the given task of calculations in a stipulated time with desired accuracy using a scientific calculator.						
PRACTICAL NO.02	Friction	2 HOURS				
To determine coefficient of friction for a given surfaces						
ACTIVITY NO.02	Presentations	2 HOURS				
To prepare and deliver a PPT presentation on engineering application of friction.						
PRACTICAL NO.03	Centroid	2 HOURS				
To determine Centroid of a given 1D object						
ACTIVITY NO.03	Act of Balancing	2 HOURS				
To cut a 2D figure precise	ly and locate a balancing point on it.					
PRACTICAL NO.04	Motions	2 HOURS				
To study and analyze a gi	To study and analyze a given set of motion.					
ACTIVITY NO.04	Graphing the Motion	2 HOURS				
To draw x-t, v-t, a-t graph	ns for given description of motion in stipulated time.					
PROJECT		10 HOURS				
To fabricate a model of si	mple structure or mechanism from low cost materials					

To fabricate a model of simple structure or mechanism from low cost materials.

TEXT BOOK

- 1. A. Nelson "Engineering Mechanics: Statics and Dynamics", 1st edition ,Tata McGraw-Hill Education, 2009, ISBN: 978-0-07-014614-3
- 2. R.C Hibbeler "Engineering Mechanics: Statics and Dynamics ",12th edition, Pearson Education, 2010, ISBN: 978-0136077909

- 1. F. P. Beer and E. R. Johnston "Vector Mechanics for Engineers Vol.I and II",10th edition, Tata Mc-Graw-Hill Education, 2012, ISBN: 978-0077402327
- 2. Ferdinand Singer, "Engineering Mechanics Statics and Dynamics", 3rd edition Harper and Row, 1994 ISBN:0063506610
- 3. Manoj K Harbola "Engineering Mechanics",1st edition, Cengage Learning, 2009, ISBN:8131509907

SCHOOL OF HUMANITIES AND ENGINEERING SCIENCESW.E.F2019-2020 (R2019)	Academy of Engineering e Affiliated to SPPU)
	UMANITIES AND ING SCIENCESW.E.F2019-2020 (R2019)
FIRST YEAR BACHELOR COURSE NAME English for Engineers	BACHELOR COURSE NAME English for Engineers
OF TECHNOLOGY COURSE CODE HP103	NOLOGY COURSE CODE HP103
COURSE CREDITS 2	COURSE CREDITS 2
RELEASE DATE : 01/07/2019 REVISION NO 1.0	E : 01/07/2019 REVISION NO 1.0

TEACHIN	G SCHEME		EXAMINATION SCHEME & MARKS					
(HOUR	S/WEEK)	() THEORY PRACTICAL 7			TOTAL			
LECTURE	PRACTICAL	MSE	ESE	IA	MSE	ESE	CA	
NIL	4	NIL	NIL	NIL	NIL	60	40	100

COURSE OBJECTIVES:

HP103.CEO.1: Introduce a variety of English texts to the students.

HP103.CEO.2: Teach basic English grammar.

HP103.CEO.3: Enrich the vocabulary of the students with AWL and NAWL

HP103.CEO.4: Guide the students to write in English coherently and formally.

HP103.CEO.5: Improve the students' overall communicative competence in English through activities like group discussions and debates.

HP103.CEO.6: Develop the students' reading and listening skills with the use of written audio and video texts.

COURSE OUTCOMES:

The students after completion of the course will be able to,

HP103.CO.1: Interpret texts written in English.

HP103.CO.2: Apply English grammar rules correctly.

HP103.CO.3: Choose and employ appropriate words from AWL and NAWL in communication.

HP103.CO.4: Develop sentence and text in English coherently and formally.

HP103.CO.5: Demonstrate overall improvement in communication skills.

HP103.CO.6: Analyze and infer from written, audio and video texts.

PRACTICAL:						
PRACTICAL NO.01	Pronunciation and Phonemic Transcription	4 HOURS				
Identification of correct pronunciation of words by decoding phonemic scripts; writing phonemic tran- scriptions of the given words						
PRACTICAL NO.02	Parts of Speech	3 HOURS				
Use of parts of speech in a	a sentence composition					
PRACTICAL NO.03	Tenses	5 HOURS				
Use of tenses in day to day	y communication and academic writing					
PRACTICAL NO.04	Vocabulary Enrichment and Common Errors	8 HOURS				
Online exercises on AWL errors in grammar while s	Online exercises on AWL and NAWL using web-based applications; Dictionary Skills and Common errors in grammar while speaking and writing English					
PRACTICAL NO.05	Letter and Email Writing	4 HOURS				
How to write an email, characteristics and essentials of a good email, formal letter writing and layout of business letters						
PRACTICAL NO.06	Essay Writing	4 HOURS				
What is an essay? Tips to write a good essay, Types of essays						
DDACTICAL NO 07						
PRACTICAL NO.07	Report Writing and Summarizing	4 HOURS				
Types of reports, format a	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz	ing				
PRACTICAL NO.07 Types of reports, format a PRACTICAL NO.08	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion	4 HOURS				
PRACTICAL NO.07 Types of reports, format a PRACTICAL NO.08 Concept of GD, Criteria Don'ts, Guidelines for par body language and interport	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion for evaluation, types of GD – General, Creative and Technic ticipation and success, Group Dynamics, Expression of though ersonal and analytical skills	4 HOURS ing 4 HOURS cal, Dos and tts and ideas,				
PRACTICAL NO.07Types of reports, format aPRACTICAL NO.08Concept of GD, CriteriaDon'ts, Guidelines for parbody language and interpoPRACTICAL NO.09	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion for evaluation, types of GD – General, Creative and Techni- ticipation and success, Group Dynamics, Expression of though ersonal and analytical skills Presentation Skills	4 HOURS ing 4 HOURS cal, Dos and ts and ideas, 4 HOURS				
PRACTICAL NO.07 Types of reports, format a PRACTICAL NO.08 Concept of GD, Criteria Don'ts, Guidelines for par body language and interpo PRACTICAL NO.09 Essentials of effective presand Prezi	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion for evaluation, types of GD – General, Creative and Techni- ticipation and success, Group Dynamics, Expression of though ersonal and analytical skills Presentation Skills sentations; Data collection and compilation; Preparation of o	4 HOURS ing 4 HOURS cal, Dos and ts and ideas, 4 HOURS utlines; PPT				
PRACTICAL NO.07Types of reports, format aPRACTICAL NO.08Concept of GD, CriteriaDon'ts, Guidelines for parbody language and interpoPRACTICAL NO.09Essentials of effective presand PreziPRACTICAL NO.10	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion for evaluation, types of GD – General, Creative and Technic ticipation and success, Group Dynamics, Expression of though ersonal and analytical skills Presentation Skills sentations; Data collection and compilation; Preparation of o Role Play	 4 HOURS ing 4 HOURS cal, Dos and ideas, 4 HOURS 4 HOURS utlines; PPT 4 HOURS 				
PRACTICAL NO.07 Types of reports, format a PRACTICAL NO.08 Concept of GD, Criteria Don'ts, Guidelines for par body language and interpo PRACTICAL NO.09 Essentials of effective presand Prezi PRACTICAL NO.10 Role-play for verbal commanalytical and creative thi	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion for evaluation, types of GD – General, Creative and Technic ticipation and success, Group Dynamics, Expression of though ersonal and analytical skills Presentation Skills sentations; Data collection and compilation; Preparation of o Role Play unication, team building and group dynamics, decision making nking, group presentation	4 HOURS ing 4 HOURS cal, Dos and ts and ideas, 4 HOURS utlines; PPT 4 HOURS g, leadership,				
PRACTICAL NO.07Types of reports, format aPRACTICAL NO.08Concept of GD, CriteriaDon'ts, Guidelines for parbody language and interportPRACTICAL NO.09Essentials of effective preseand PreziPRACTICAL NO.10Role-play for verbal commentanalytical and creative thiPRACTICAL NO.11	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion for evaluation, types of GD – General, Creative and Technic ticipation and success, Group Dynamics, Expression of though ersonal and analytical skills Presentation Skills sentations; Data collection and compilation; Preparation of o Role Play nunication, team building and group dynamics, decision making nking, group presentation Debate	 4 HOURS ing 4 HOURS cal, Dos and its and ideas, 4 HOURS utlines; PPT 4 HOURS g, leadership, 4 HOURS 				
PRACTICAL NO.07 Types of reports, format a PRACTICAL NO.08 Concept of GD, Criteria Don'ts, Guidelines for par body language and interpo PRACTICAL NO.09 Essentials of effective presand Prezi PRACTICAL NO.10 Role-play for verbal commanalytical and creative thi PRACTICAL NO.11 Concept, Dos and Don'ts, body language and interport	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion for evaluation, types of GD – General, Creative and Technic ticipation and success, Group Dynamics, Expression of though ersonal and analytical skills Presentation Skills sentations; Data collection and compilation; Preparation of o Role Play nunication, team building and group dynamics, decision making nking, group presentation Debate Guidelines for participation and success, Expression of though ersonal and analytical skills	 4 HOURS ing 4 HOURS cal, Dos and the addression of the addression				
PRACTICAL NO.07 Types of reports, format a PRACTICAL NO.08 Concept of GD, Criteria Don'ts, Guidelines for par body language and interpo PRACTICAL NO.09 Essentials of effective presand Prezi PRACTICAL NO.10 Role-play for verbal commanalytical and creative thi PRACTICAL NO.11 Concept, Dos and Don'ts, body language and interpo PRACTICAL NO.12	Report Writing and Summarizing and writing a report, what is summarizing? Rules of summariz Group Discussion for evaluation, types of GD – General, Creative and Techniticipation and success, Group Dynamics, Expression of thoughersonal and analytical skills Presentation Skills sentations; Data collection and compilation; Preparation of o Role Play unication, team building and group dynamics, decision making nking, group presentation Debate Guidelines for participation and success, Expression of thoughersonal and analytical skills Listening Skills	 4 HOURS ing 4 HOURS 4 HOURS cal, Dos and its and ideas, 4 HOURS utlines; PPT 4 HOURS g, leadership, 4 HOURS and ideas, 4 HOURS 				

PRACTICAL NO.13	Reading Comprehension	4 HOURS

Techniques of reading- Intensive, Extensive, Skimming and Scanning; Reading Comprehensions

- 1. Ashok Thorat and Munira Lokhandwala: Enriching Oral and Written Communication in English, ISBN 9788125037446
- 2. Michael Swan: Practical English Usage, Oxford, 3rd Edition, ISBN-13: 978-0194420983
- 3. Dutt et.al. : A Course in Communication Skills, Foundation, 1 edition
- 4. Peter Roach: English Phonetics and Phonology, 4th Edition, Cambridge, ISBN-0521149215
- 5. Lynch: Listening, Cambridge, 1st edition, ISBN- 0521707757
- 6. Malcom Goodale: Professional Presentations, Cambridge, ISBN- 8175962577
- 7. S. Aggarwal: Essential Communication Skills, Ane Books pvt. Ltd, ISBN- 8180522806
- 8. Jennings: Communication Basics, Cengage Learning, 1st edition, ISBN- 8131515206

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)	
FIRST YEAR BACHELOR	COURSE NAME	German Language	
OF TECHNOLOGY	COURSE CODE	HP104	
	COURSE CREDITS	2	
RELEASE DATE : 01/07/2019	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
2	NIL	NIL	NIL	30	20	NIL	50

COURSE OBJECTIVES:

HP104.CEO.1: To introduce German as a foreign language and enhance knowledge, communication and intellectual capabilities which helps to improve cognitive skills and creativity vital for problem solving and innovation.

HP104.CEO.2: To develop an awareness of German culture along with providing better career opportunities later in life.

COURSE OUTCOMES:

The students after completion of the course will be able to,

- HP104.CO.1: Participant will study the foundational aspects of grammar, develop comprehension of low to medium difficulty text and practice speaking about every day basic topics
- HP104.CO.2: Develop basic communication and comprehension skills for conducting day-to-day business effectively
- HP104.CO.3: Use simple, familiar expressions to interact with native speakers or when visiting Germany

HP104.CO.4: Enhance their knowledge of German culture and society

THEORY	Y COURSE CONTENT				
UNIT 1		2 HOURS			
Introductio	on- Alphabets, Numbers 0-20, Self Introduction and Introducing third person	. Grammar-			
wh Questic	ons(w-frage), pronouns.				
UNIT 2		4 HOURS			
Greetings,	Speaking about different Languages and Countries, numbers above 20, season	ns Grammar-			
Yes or no (Questions, Sentence Construction verbs and conjugations of regular verbs				
UNIT 3		4 HOURS			
Speaking a	bout hobbies and interests, different professions, weekdays, months Grammar-	Nouns, Arti-			
cles, conjug	gations of irregular verbs				
UNIT 4		6 HOURS			
Vocabulary	v related to food, different places in the city, transport Grammar- Imperative s	entence			
UNIT 5		4 HOURS			
Relations, and articles	Relations, understanding clock timings Grammar- Cases, Nominative case, nominative verbs pronouns and articles				
UNIT 6		6 HOURS			
Body parts, directions, asking for the address email address and telephone number Grammar- Ac- cusative case, accusative verbs pronouns and articles					

TEXT BOOK

1. Netzwerk Deutsch als Fremdsprache- Kursbuch A1(Stefanie Dengler), Goyal Publications.

REFERENCE BOOK

1. https://www.klett-sprachen.de , https://www.duolingo.com/

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Japanese Language
OF TECHNOLOGY	COURSE CODE	HP105
	COURSE CREDITS	2
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHIN	G SCHEME		EXA	MINAT	TION SCHEMI	E AND MARKS	
(HOUR	S/WEEK)	THEORY TUTORIAL/ PRESENTATIO				PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
2	NIL	NIL	30	20	NIL	NIL	50

COURSE OBJECTIVES:

HP105.CEO.1: To perform daily basic activities including below mentioned.

HP105.CEO.2: Self Introduction, Greetings in Japanese.

HP105.CEO.3: Introduction to Japanese scripts- Hiragana, Katakana, Kanji.

HP105.CEO.4: Develop basic vocabulary throughgroup activities, videos.

HP105.CEO.5: Develop an understanding business etiquette.

HP105.CEO.6: Introduce topics related daily conversation, listening skills, cultural awareness.

COURSE OUTCOMES:

The students after completion of the course will be able to,

HP105.CO.1: Participant will study the foundational aspects of grammar, develop comprehension of low to medium difficulty text and practice speaking about every day basic topics.

HP105.CO.2: Develop basic communication and comprehension skills for conducting day-to-day business effectively.

HP105.CO.3: Use simple, familiar expressions to interact with native speakers or when visiting Japan. HP105.CO.4: Enhance their knowledge of Japanese culture and society.

THEORY COURSE CONTENT					
UNIT 1		4 HOURS			
How to give	e self-Introduction in Japanese, Greetings in Japanese.				
UNIT 2	Hiragana, vocabulary and listening.	4 HOURS			
How to give	e self-Introduction in Japanese, Greetings in Japanese.				
UNIT 3		4 HOURS			
Hiragana a	nd Katakana, and Japanese games.				
UNIT 4		4 HOURS			
Family Me	mbers understanding in Japanese. and Vocab.				
UNIT 5		5 HOURS			
Japanese c	ultures study, and business etiquette.				
UNIT 6		5 HOURS			
Daily conve	ersation and cultural study.				

TEXT BOOK

1. Minna Na Nihongo, Goyal Publications.

REFERENCE BOOK

1. Nil

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Applications Programming-Python
OF TECHNOLOGY	COURSE CODE	CS102
	COURSE CREDITS	3
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME & MARKS						
(HOUR	S/WEEK)		THEORY		PRACTICAL 7			TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	MSE	ESE	IA	
1	4	NIL	40	NIL	30	30	40	140

COURSE OBJECTIVES:

CS102.CEO.1: Get familiar with basics of Python programming.

CS102.CEO.2: Understand usage of conditional and looping statements in Python.

CS102.CEO.3: Learn different simple data structure supported in Python.

CS102.CEO.4: Acquire knowledge and skills of strings and dictionary.

CS102.CEO.5: Implement Object Oriented Programming concepts using Python.

CS102.CEO.6: Introduce the concepts of Pandas & NumPy.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CS102.CO.1: Debug syntax and semantics in Python programs.

CS102.CO.2: Demonstrate proficiency in handling strings and file system.

- CS102.CO.3: Implement the programs using core data structures like Lists and Dictionaries.
- CS102.CO.4: Interpret the concepts of Object Oriented Programming in Python

CS102.CO.5: Develop solution for real life problems using Python.

THEORY COURSE CONTENT						
UNIT 1	Python Fundamentals and Data Handling	2 HOURS				
Introductio gram, Liter output oper	Introduction, Features of Python, History and Future of Python, Writing and executing Python pro- gram, Literal constants, variables and identifiers, Data Types ,Mutable and immutable types, Input output operation , Comments, Reserved words, Indentation, Operators and expressions.					
UNIT 2	Decision and Iterative Statements	2 HOURS				
Introduction ing Statemer Introduction loop, selection	Introduction to Decision Statements: Decision control statements, Selection/conditional branch- ing Statements: if, if-else, nested if, if-elif-else statements. Introduction to Iterative Statements: Basic loop Structures/Iterative statements: while loop, for loop, selecting appropriate loop. Nested loops, breek, continue, page, else statement used with loops					
UNIT 3	List manipulation, Tuples and Python Function	2 HOURS				
ods. Tuples: Introduction, creating & accessing tuples, tuples operations, tuples functions & methods. Functions: Need for functions, definition, call, variable scope and lifetime, the return statement. Defining functions, Lambda or anonymous function, documentation string, good programming prac- tices. Introduction to modules, Introduction to packages in Python, Introduction to standard library						
UNIT 4	Strings and Dictionary	3 HOURS				
Strings: In are immuta and chr() fu Dictionary	Strings: Introduction, string operations- concatenation, appending, multiplication and slicing. Strings are immutable, strings formatting operator, built in string methods and functions. Slice operation, ord() and chr() functions, in and not in operators, comparing strings, Iterating strings, the string module. Dictionary: Introduction, working with dictionaries, dictionary functions and methods					
UNIT 5	Object Oriented Programming	2 HOURS				
Programming Paradigms-monolithic, procedural, structured and object oriented, Features of Object oriented programming-classes, objects, methods and message passing, inheritance, polymorphism, containership, reusability, delegation, data abstraction and encapsulation. Classes and Objects: classes and objects, class method and self-object, class variables and object variables, public and private members, class methods						
UNIT 6	Data Structure and Libraries in Python	2 HOURS				
Introductio	n to data structure, pandas, NumPy.					

PRACTICAL:		
PRACTICAL NO.01		2 HOURS
To accept an object mass in Momentum is calculated as ϵ	kilograms and velocity in meters per second and display its $e=mc2$ where m is the mass of the object and c is its velocity	momentum. y.
PRACTICAL NO.02		2 HOURS
Write a Python program for • If n is single digit print	following conditions. square of it.	
 If n is two digit print s If n is three digit print	quare root of it. cube root of it.	
PRACTICAL NO.03		4 HOURS
Solve the Fibonacci sequence	e using recursive function in Python.	
PRACTICAL NO.04		4 HOURS
Write a Python program to p	print different patterns.	
PRACTICAL NO.05		2 HOURS
50>= and <60 , then the grathing division. PRACTICAL NO.06	ade is second division. If aggregate is $40>=$ and <50 , then	the grade is 4 HOURS
To check whether input nun with three digits such that the	hber is Armstrong number or not. An Armstrong number is he sum of the cubes of its digits is equal to the number itself	is an integer E. Ex. 371.
PRACTICAL NO.07		2 HOURS
Write a program in Python t smaller no. and cube of the both no. are equal find squar	to enter two unequal nos. if first no. is greater than display s greater no. otherwise vice-versa. If no. are equal display re, square root and cube root of a number.	square of the the message
PRACTICAL NO.08		4 HOURS
Write a Python program to p a) String concatenation b) S change.	perform following string operations. tring Reverse c) String compare d) String length e) Palindr	rome f) Case
PRACTICAL NO.09		2 HOURS
Select the number from the e	entered list and find its position in Python (use Linear Searc	h).
PRACTICAL NO.10		4 HOURS

PRACTICAL NO.11		6 HOURS
 Write Python class : (Introduce class, obj Using concepts of potential in the second sec	for bank customer with withdraw and deposit operations (use ect concepts). olymorphism write Python application program.	e inheritance)
Write a Python program t	to perform addition and multiplication of 2 matrices.	
PRACTICAL NO.12		4 HOURS
Write a Python program t	to convert a Panda module Series to Python list and it's type.	
PRACTICAL NO.13		4 HOURS
Write a NumPy program	for Plotting and analyzing data.	
Mini Project:		
 Project is for a period Group of two or three particular division. 	od of 2 weeks. ee has to choose project topic from the list designed by concern	ned faculty of
3. Each group has to c first weeks.	collect requirements for project and get approved by concerne	d teachers in
4. implementation and	testing need to be performed in second week.	

- 5. Demonstration along with presentation need to be given as final project submission.
- 6. Project carries 20 Marks.

TEXT BOOK

- Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1st Edition, Create Space Independent Publishing Platform, 2016. (http://dol.drchuck.com/pythonlearn/ EN_us/pythonlearn.pdf) (Chapters 1 - 13, 15)
- Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2ndEdition, Green Tea Press, 2015. http://greenteapress.com/thinkpython2/thinkpython2.pdf) (Chapters 15, 16, 17) (Download pdf files from the above links)

- 1. Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition, Wiley India Pvt Ltd. ISBN-13: 978-8126556014.
- 2. Mark Lutz, "Programming Python", 4th Edition, O'Reilly Media, 2011.ISBN-13: 978-9350232873
- Wesley J Chun, "Core Python Applications Programming", 3rd Edition, Pearson Education India, 2015. ISBN-13: 978-9332555365.
- Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures and Algorithms in Python", 1stEdition, Wiley India Pvt Ltd, 2016. ISBN-13: 978- 8126562176.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)
FIRST YEAR BACHELOR	COURSE NAME	Design Thinking
OF TECHNOLOGY	COURSE CODE	ME106
	COURSE CREDITS	2
RELEASE DATE : 01/07/2019	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS						
(HOUR	S/WEEK)	THEORY TUTORIA			TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION		
NIL	4	NIL	NIL	40	NIL	60	100	

COURSE OBJECTIVES:

ME106.CEO.1: Disseminate the philosophy of design thinking.

ME106.CEO.2: Impart the information regarding User centric approach.

ME106.CEO.3: Give exposure to information collection tools to clearly define user centric problem.

ME106.CEO.4: Enhance thinking in order to inspect diverse solutions.

ME106.CEO.5: Sensitize about the feasibility, desirability and viability criteria's for selection of Appropriate solution.

ME106.CEO.6: Educate about different types of prototyping.

COURSE OUTCOMES:

The students after completion of the course will be able to,

ME106.CO.1: Recall fundamental principles of design thinking.

- ME106.CO.2: Explain all the dimensions of user and his needs using design thinking approach.
- ME106.CO.3: Outline user centric problem by using information gathering techniques.
- ME106.CO.4: Compare multiple solutions through ideation process.

ME106.CO.5: Interpret most appropriate solution for defined user centric problem.

ME106.CO.6: Develop the most optimum solution.

PRACTICAL:						
PRACTICAL NO.01 Human Centred Design						
Introduction to Human Ce cess, Human Centred Desi	Introduction to Human Centred Design, Human Centred Design Phases, Human Centred Design Pro- cess, Human Centred Design case study					
PRACTICAL NO.02	Research Methodology (Problem Definition, Infor- mation Gathering)	4 HOURS				
Design thinking Models & ping Categorization of rar Information gathering - Pr Survey Analysis, Drawing	Design thinking Models & Methodology - General Problem Statement, Random check list, mind map- ping Categorization of random check list. Brainstorming of problem areas, Research Methodology - Information gathering - Primary, Secondary Sources, data presentation, Preparation of survey forms, Survey Analysis, Drawing Inference.					
PRACTICAL NO.03	Ideation	4 HOURS				
SWOT analysis, Vein Dia Translation of inferences in ing drawing of simple form Ergonomic and aesthetic of	agram (User Desirability, Feasibility, Viability check) Drawin nto design criteria, specific problem statement, Ideation – free n of products (Isometric views, layout, circuit diagram, Ideati consideration in design.	ig inferences, hand sketch- on sketches),				
PRACTICAL NO.04	Prototyping	2 HOURS				
Concept validation, evalu method of prototyping.	ation and detailing, Different methods of Prototyping, selec	tion of right				
PROJECT		40 HOURS				
PRACTICAL NO.05	Phase 1 : General Problem Statement and problem background	4 HOURS				
PRACTICAL NO.06	Phase 2 : Research methodology	4 HOURS				
PRACTICAL NO.07	Phase 3 : Product Specification	4 HOURS				
PRACTICAL NO.08	Phase 4 : Ideation	6 HOURS				
PRACTICAL NO.09	Phase 5 : Concept Evaluation, Validation and Con- cept detailing	8 HOURS				
PRACTICAL NO.10	Phase 6 : Prototyping	10 HOURS				
PRACTICAL NO.11	Phase 7 : Documentation	4 HOURS				
ΤΕΧΤ ΒΟΟΚ						

TEXT BOOK

- 1. Emrah Yayici, Design Thinking Methodology Book, Amazon Digital Services LLC Kdp Print Us, 2016, ISBN: 6058603757, 9786058603752
- 2. Idris Mootee, Design Thinking for Strategic Innovation, Wiley (2017), ISBN-13: 978-8126572694
- 3. Thomas Lockwood, Design Thinking: Integrating Innovation, Customer Experience, and Brand Value, Allworth Press; Original edition (10 November 2009), ISBN-13: 978-1581156683

- 1. Harper Perennial, Lateral Thinking: Creativity Step by Step; Reissue edition, 2015 (Perennial Library).
- John Chris Jones, Design Methods, John Wiley & Sons, David Fulton Publishers, London, 1980, ISBN 0-471-28496-3.
- Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg Publishers (May 15, 2011), ISBN-13: 978-1847886361
- 4. Tim Brown, Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, Published September 29th 2009 by Harper Business, ISBN 0061766089

(An autonomouse Institute Affilated to SPPU)	COURSE SYLLABUS			
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2019 - 2020 (R2019)		
FIRST YEAR BACHELOR	COURSE NAME	Indian Constitution (Audit Course)		
OF TECHNOLOGY	COURSE CODE	HP106		
	COURSE CREDITS	NIL		
RELEASE DATE : 01/07/2019	REVISION NO	1.0		

TEACHIN	G SCHEME		EXA	MINAT	TION SCHEMI	E AND MARKS	
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
1	NIL	NIL	NIL	NIL	NIL	NIL	NIL

COURSE OBJECTIVES:

HP106.CEO.1: To realise the significance of constitution of India to students from all walks of life and help them to understand the basic concepts of Indian constitution.

HP106.CEO.2: To identify the importance of fundamental rights as well as fundamental duties.

HP106.CEO.3: To understand the functioning of Union, State and Local Governments in Indian federal system

HP106.CEO.4: To learn procedure and effects of emergency, composition and activities of election commission and amendment procedure

COURSE OUTCOMES:

The students after completion of the course will be able to,

- HP106.CO.1: Understand and explain the significance of Indian Constitution as the fundamental law of the land.
- HP106.CO.2: Exercise his fundamental rights in proper sense at the same time identifies his responsibilities in national building.
- HP106.CO.3: Analyze the Indian political system, the powers and functions of the Union, State and Local Governments in detail.
- HP106.CO.4: Understand Electoral Process, Emergency provisions and Amendment procedure.

THEORY COURSE CONTENT							
UNIT 1	Introduction to Indian Constitution	2 HOURS					
Meaning of	the constitution law and constitutionalism, Historical perspective of the Co	nstitution of					
India, Salie	ent features and characteristics of the Constitution of India, Scheme of the	fundamental					
rights, The	scheme of the Fundamental Duties and its legal status, The Directive Princi	ples of State					
Policy – Its	s importance and implementation.						
UNIT 2	Federal Structure and Amendment	4 HOURS					
Parliament India, Ame constitution	Federal structure and distribution of legislative and financial powers, between the Union and the States, Parliamentary Form of Government in India – The constitution powers and status of the President of India, Amendment of the Constitutional Powers and Procedure, The historical perspectives of the constitutional amendments in India.						
UNIT 3	Emergency Provisions	2 HOURS					
Emergency	Provisions: National Emergency, President Rule, Financial Emergency.						
UNIT 4	Constitutional Schemes	4 HOURS					
Local Self Government – Constitutional Scheme in India, 13. Scheme of the Fundamental Right to							
Equality, Scheme of the Fundamental Right to certain Freedom under Article 19, Scope of the Right							
to Life and	to Life and Personal Liberty under Article 21.						
TEXT B	OOK						

- 1. D. D. Basu, Introduction to the Constitution of India, LexisNexis.
- 2. Granville Austin, The Constitution of India: Cornerstone of a Nation, Oxford University Press.

- 1. Subhash Kashyap, Our Constitution, National Book Trust.
- 2. M.P. Jain, Indian Constitutional Law, LexisNexis.
- 3. V.N.Slmkla, Constitution of India, Eastern Book Company.
- 4. P.M. Bak shi , The Constitution of India , Universal Law Publishing.
- 5. M.V.Pylee, Constitutional Government in India , S. Chand.
- 6. V. S. Khare, Dr. B.R. Ambedkar and India 's National Security.

MIT ACADEMY OF ENGINEERING, ALANDI

An Autonomous Institute Affiliated to

Savitribai Phule Pune University

Curriculum For Second Year Bachelor of Technology in Civil Engineering

2019-2023

MIT Academy of Engineering Autonomous Institute Affiliated to SPPU							COUR (RE	SE S VISIO	TRUC ON 20 ⁻	TURE 19)		
	SCHOOL O	F MECHANICAL AND CIVI ENGINEERING	L			W.E.	F		:	202	20-2021	ĺ
SECO	ND YEAR I	BACHELOR OF TECHNOL	OGY	IN	RE	LEASE	DATE		:	01/	06/2020)
	CI	VIL ENGINEERING			R	EVISIO	N NO.		:		1.0	
			SE	MESTE	R: III							
		SUMMER	INTE	RNSH	IP (A	udit: C	V200)					
		COURSE	T	EACHI SCHEN	NG 1E	EXA	MINATI	ON SC	HEME	AND MA	RKS	С
			н	our/W	ek	-	THEORY	,	PI	RACT	T O	E
TYPE	CODE	NAME	L	Р	т	MSE	ESE	IA	T/P	DM	T A L	I T
ESC8	ME221	Material Engineering	3	2	-	35	35	30	50	0	150	4
DC01	CV204	Geotechnical Engineering	3	2	-	35	35	30	50	0	150	4
DC02	CV205	Building Design & Construction		2	-	35	35	30	50	0	150	4
DC03	CV206	Mechanics of Solids		2	-	35	35	30	50	0	150	4
SDP1	ET235	Rapid Prototyping		4	-	0	0	25	0	50	75	2
SDP2	CV230	Minor Project Design		2	-	0	0	0	0	50	50	1
SDP3	CV23#	Skill Development Course-1 (Excel / REVIT)	0	4	-	0	0	25	0	50	75	2
ESC9	CV203	Environmental Sciences	1	0	-	-	-	-	-	-	Au	ıdit
		TOTAL	13	18	0	140	140	170	200	150	800	21
			SE	MESTE	R: IV	1						1
		COURSE	S		CHING EXAMINATION SCHEME AND MARKS				RKS	C		
			Но	our/We	ek	Т	HEORY		PR	АСТ	T	E
TYPE	CODE	NAME		Ρ	т	MSE	ESE	IA	T/P	DM	T A L	D I T
NSC5	AS203/4	Applied Mathematics	3	2	-	35	35	30	50	0	150	4
DC04	CV214	Mechanics of Fluids	3	2	-	35	35	30	50	0	150	4
DC05	CV215	Surveying & Geospatial Engineering	3	2	-	35	35	30	50	0	150	4
DC06	CV216	Structural Analysis	3	2	-	35	35	30	50	0	150	4
SDP4	ET224	Digital Prototyping	0	4	-	0	0	25	0	50	75	2
SDP5	CV240	Minor Project Implementation	0	2	-	0	0	0	0	50	50	1
HSS3	HP202	Professional Skill	0	4	-	0	0	25	0	50	75	2
HSS4	HP203	Liberal Learning TOTAL	1 13	0 18	-	- 140	- 140	- 170	- 200	- 150	Au 800	ıdit 21

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	2019-2020 (Rev. 2019)
SECOND YEAR BACHELOR	COURSE NAME	Student Internship Program (Life/Soft Skills)
CIVIL ENGINEERING	COURSE CODE	CV200
	COURSE CREDITS	Audit
RELEASE DATE : 01/07/2020	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

COURSE OBJECTIVES:

CV200.CEO.1: To develop good bahavioural practices

CV200.CEO.2: To gain learning and living experience

CV200.CEO.3: To get acquainted with online learning platforms

CV200.CEO.4: To recognize the latest trend and understand the requirements for professional life

CV200.CEO.5: To formulate the problem statement

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV200.CO.1: Manage emotions, health, finances, relationships, performance extracurricular activities

CV200.CO.2: Increase knowledge of emotional competency and emotional intelligence

CV200.CO.3: Develop interpersonal skills and adopt good leadership behavior

CV200.CO.4: Reduce negative stress while promoting energy or positive stress

CV200.CO.5: Inculcate a sense of sportsmanship, better physical health and competitive spirit

INTRODUCTION:

The main aim of this internship is to assist all Second Year B.Tech. students to acquire the skills required for personal stability and professional growth. The ultimate goal is to imbue students with professionalism and life skills. Using this internship, MITAoE students will enhance their professional skills, making themselves more marketable in today's competitive world. The students can develop various extracuurricular skills for working on emotional intelligence and sportsman spirit.

SCOPE AND STRUCTURE OF SIP:

Student Internship Program (Life/Soft Skills) is offered to entrants of Second Year B.Tech. (after semester II) that meet the eligibility criteria stated below:

Second Year B.Tech. entrants should apply for 3 to 4 weeks duration life skill courses during June-July of every academic year. This is an audit course.

The scope of this internship is limited to identifying life skill development opportunities and assisting MITAoE students to apply for such courses.

STUDENT ELIGIBILITY CRITERIA:

Students applying for internship must meet the following criteria:

After completion of second academic semester, First Year B.Tech. students (Second Year B.Tech. entrants) of all schools are eligible to apply for 3 to 4 weeks duration internships under Student Internship Program.

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	2020 - 2021(R2019)		
SECOND YEAR BACHELOR	COURSE NAME	Materials Engineering		
OF TECHNOLOGY	COURSE CODE	ME221		
	COURSE CREDITS	4		
RELEASE DATE : 01/07/2019	REVISION NO	1.0		

TEACHIN	ING SCHEME EXAMINATION SCHEME AND MARKS						
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	NIL	50	150

PRE-REQUISITE:

COURSE OBJECTIVES:

ME221.CEO.1: To illustrate the fundamental properties of various engineering materials and demonstrate the need and applications of different heat treatment processes to it.

- ME221.CEO.2: To explain the structure- property co relationship as a basis for performance of materials.
- ME221.CEO.3: To identify the most appropriate material and the required manufacturing process for the given project in the industry/research fields.

ME221.CEO.4: To categorize the various material testing methods and characterization techniques and make use of it to apply for given component/product.

COURSE OUTCOMES:

The students after completion of the course will be able to,

- ME221.CO.1: Relate the applications of various engineering materials and heat treatment processes in material processing industry.
- ME221.CO.2: Interpret the specifications, composition, concepts and fundamental properties of engineering materials applied in industrial/research field.
- ME221.CO.3: Select the suitable materials, manufacturing process for specified application to meet the product performance requirements within its product service life.
- ME221.CO.4: Analyze the suitable material testing and characterization technique to ensure service life for specific product without any failure or deterioration in its performance.

THEORY COURSE CONTENT						
UNIT 1	Ferrous, Nonferrous metals and alloys	14 HOURS				
Basics of extractive metallurgy-						

Importance of metallurgy in day to day life and in industry, Overview or introduction of raw material processes of steel (Melting, Continuous casting, rolling)

Ferrous metals-

Steels-Classifications and specifications of steels and cast iron as per ASTM, SAE and Indian Standard designation system. Iron (Fe)-Iron Carbide (Fe3C) equilibrium diagram, Critical cooling rate, transformation products of Austenite-Pearlite-Martensite, Alloy steels- High Strength Low Alloy (HSLA), Boron steel, Stainless steel-Austenitic, Ferritic, Martensitic, Maraging steels-Significance, composition and applications.

Cast Irons- Classification, Manufacturing, Composition, Properties & applications of white C.I., Grey cast iron, malleable C.I., S.G. cast iron, chilled and alloy cast iron, effect of various parameters on structure and properties of cast irons. Specific applications such as machine tools, automobiles, pumps, valves etc.

Heat treatment of steels- Time- Temperature Transformation Diagram, Annealing-Conventional, Normalizing, Comparison of Annealing and Normalizing, Hardening- effects of different media- water, oil, salt bath, Vacuum Hardening (Latest oxygen free Heat treatment), Tempering- High-medium-low temperature Defects due to heat treatment- Quench cracks, oxidation, overheating. Classification of surface hardening treatments- Carburizing, Nitriding, Carbonitriding, flame hardening, induction hardening, Anodizing

Non-ferrous metals- Classification, Composition, Properties & applications of: Copper and Its Alloys-Alpha, beta and gamma brasses, Nickel and Its alloys-Inconel- Monel-Invar-Elnivar-Alnico, Aluminium and Its alloys-LM6-LM11- LM13-LM14-Hinduminium (RR350).

Bearing materials and its applications- Properties of bearing materials, Materials-Tin based babbits, Lead based babbits, Gray Cast Iron, Non-metallic bearings-Nylon, Polyamide, Self-lubricating bearings-powder metallurgical bearings

UNIT 2 Non-metallic materials-Polymers, Ceramics and Composites

8 HOURS

Classification of polymers, Polymer types-thermoplastics-thermoset-Elastomers, Polymer synthesis and processing-injection moulding-extrusion-blow moulding-calendaring, Degradation of polymerschemical, thermal-biological- mechanical. Polymer recycling methods Introduction to Advanced Ceramics-Barium Titanate, Barium Zirconium Titanate and Barium Calcium Titanate(BZT-BCT) Ferrites, Silicon Carbide, Alumina, Ceramics, its classifications and their applications. High Performance Polymers: Acrylo Butadiene Styrene- Polycarbonate-Polyamide, Polymethyl Methacrylate: Characteristic, properties and evaluation

Composites: Need of composites, fabrication and testing of composite material, Particle-reinforced composites, large-particle composites, dispersion-strengthened, Fiber-reinforced composites, polymermatrix composites, metal-matrix composites, ceramic matrix composites, carbon-carbon composites, structural composites, laminar composites. Case study for industrial applications.
UNIT 3 Strength of materials

Strengthening mechanisms: Refinement of grain size, Cold working/strain hardening, Solid solution strengthening, Dispersion strengthening. Heat treatment of nonferrous metals: Precipitation, Age hardening and homogenization Creep strength, High temperature-intergranular and low temperaturetrans granular fracture of materials, Fracture toughness properties of materials applied in cryogenic and high temperature- rocket and aerospace applications, Fracture toughness improvement methodsshot peening

UNIT 4 Powder metallurgical materials

Basic steps of powder metallurgy process, classification & methods of powder manufacturing, characteristics of metal powders, Conditioning of metal powders (Screening, Blending & mixing, annealing), Compaction techniques (cold compaction, hot compaction, Isostatic compaction & powder rolling), mechanism & importance of sintering, Pre-sintering & sintering secondary operations.

Advantages, limitations and applications of powder metallurgy. Production of typical P/M components (with flow charts), self-lubricated bearing, cemented carbides, cermets, refractory metals, electrical contact materials, friction materials, and diamond impregnated tools, friction plate, clutch plate, commutator brushes.

UNIT 5 Corrosion and its prevention techniques

Classification of corrosion- Dry corrosion & wet corrosion, Mechanism of corrosion, Types of corrosion: Pitting corrosion, stress corrosion, season cracking, Cavitation corrosion, caustic embrittlement, intergranular corrosion, crevice corrosion, erosion corrosion, uniform corrosion, galvanic corrosion,

Corrosion prevention methods- classification of different methods, e.g. inhibitors, Cathodic & anodic protection, internal & external coatings, Low & High temperature corrosion. Design against corrosion.

UNIT 6 Introduction to Advanced Materials-Nanomaterials, Magnetic, 6 HOURS **Piezoelectric** materials

Nanomaterials-Basic concepts of Nano science and Nanotechnology, Nanomaterials synthesis methods- Top down and bottom up approach, Sol gel technique, solution blending, laser vaporization, arc discharge method Carbon nanotubes and its classification, Graphene Principle of SEM, TEM and AFM, X ray diffraction, Fundamentals principles of SEM, SE and BSE imaging modes, Fracture mode analysis and failure analysis using SEM.AFSEM-Correlative SEM-AFM analysis

Magnetic materials- Soft & Hard Ferrites, Vibrating Sample Magnetometer for studying hysteresis curve of magnetic materials.

Dielectric material- Piezo electric and Ferro electric materials and their applications, superconductors. Modern Materials for high, low temperatures and Cryogenic applications

6 HOURS

8 HOURS

PRACTICAL:				
Perform the following	experiments.			
PRACTICAL NO. 1	Jominy End Quench Test	2 HOURS		
Jominy End Quench Test	for hardenability.			
PRACTICAL NO. 2	Izod Impact Test	2 HOURS		
Izod impact test				
PRACTICAL NO. 3	Charpy Impact Test	2 HOURS		
Charpy impact test				
PRACTICAL NO. 4	Hardness Test	2 HOURS		
Vickers hardness test				
PRACTICAL NO. 5	Hardness Test	2 HOURS		
Rockwell hardness test				
PRACTICAL NO. 6	Hardness Test	2 HOURS		
Poldi hardness test				
PRACTICAL NO. 7	Dye Penetrant Test	2 HOURS		
Dye Penetrant Test for detection of surface level flaws in materials				
PRACTICAL NO. 8	Ultra-sonic Test	2 HOURS		
Ultra-sonic test for detecti	ion of internal flaws in materials.			
PRACTICAL NO. 9	Case study-based experimentation	4 HOURS		
Selection and performance	e of suitable hardness testing method for the given industrial co	mponents.		
PRACTICAL NO. 10	Microstructural analysis of steels	2 HOURS		
Microstructural analysis o	f steels			
PRACTICAL NO. 11	Microstructural analysis of Cast irons	2 HOURS		
Microstructural analysis of Cast irons				

TECHNICAL PAPER PRESENTATION/PUBLICATION ASSESSMENT PROCESS

- 1. Course champion should conduct meetings with faculty members, students from all disciplines for the given semester regarding following points-Importance of paper publication at SY level for placements/research work, plagiarism, research ethics, technical paper formation and publication process, demonstration of experimental and review paper formation.
- 2. Each faculty member should form students' groups in practical session as per students' interest domain selected from any content form the syllabus or from content beyond syllabus.
- 3. Each student groups will download the research papers, discuss the various technical points and doubts with peers and faculty member during the time left after conduction of practical in laboratory session as a continuous process for all weeks during semester.
- 4. In case of doubts are unsolved within particular practical session, then doubts are discussed within course meeting held weekly and the information is conveyed back to students to complete the loop.
- 5. Faculty members should display the list of Scopus/web of science indexed journals with no article processing fee or SPPU UGC CARE included journals' list and list of conferences scheduled within the semester to students and motivate students to prepare drafts.
- 6. The drafts are prepared by students and reviewed by faculty member, team of materials Engineering and then DRC should be done to receive suggestions on the paper draft.
- 7. The evaluation of the assessment can be said as complete if students' groups are able to
 - (a) Publish the paper in journal or conference proceedings which are Scopus indexed or web of science indexed
 - (b) Students' group has received the acceptance for the publication of their paper.
- 8. In case any students' group is not able to publish or receive the acceptance then minimum criteria is to communicate the paper and receive at least review 1 from reviewers of the paper with no major corrections. Communication to the journal for the paper with no major corrections and possibility of publication is mandatory for all project groups.

PROJECT BASED LEARNING- CONTENT BEYOND SYLLABUS

A group of 3 students will be given following set of experiments which needs to be performed to prepare a review report based on the practical observations, literature review discussions among peers and faculty members:

- 1. Identification of failure mode (cup/cone/brittle/ductile) of the given failed component obtained from any manufacturing company or workshop
- 2. Selection of suitable destructive and non-destructive testing method for the given component which has defects obtained from any manufacturing company or workshop

TEXT BOOK

- 1. Material Science & Metallurgy for Engineers, Dr. V.D. Kodgire & S. V. Kodgire, Everest Publications. 31^{st} Edition, ISBN No: 8186314008
- 2. Mechanical Behavior & Testing of Materials, A. K. Bhargava, C.P. Sharma P H I Learning Private Ltd. 2011 edition, ISBN No 13-9788120342507

- 1. Engineering Metallurgy, Higgins R. A., Viva books Pvt. Ltd., 2004 ISBN No 13-9788176490276
- 2. Material Science & Engineering, Raghavan V., Prentice Hall of India, New Delhi. 2003 ISBN No 13-9788120324558
- 3. Introduction to Physical Metallurgy, Avner, S. H., Tata McGraw-Hill, 2014, ISBN 13-9780074630068
- 4. Materials Science & Engineering, W. Callister, Wiley Publications, 2013, ISBN No 13-9788126521432
- 5. Physical Metallurgy for Engineers, Clarke D.S. & Varney W.R. Affiliated East-West Press, New Delhi ISBN No 13-978-8176710350

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)
SECOND YEAR BACHELOR	COURSE NAME	Geotechnical Engineering
	COURSE CODE	CV204
	COURSE CREDITS	4
RELEASE DATE : 01/07/2020	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY TUTORIAL/ PRES				TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE : Applied Mechanics

COURSE OBJECTIVES:

CV204.CEO.1: To describe the basics of soil and its importance in Civil Engineering.

CV204.CEO.2: To establish an understanding of the fundamental concepts of mechanics for soil.

CV204.CEO.3: To provide students with exposure to the systematic methods for solving geotechnical engineering related problems.

CV204.CEO.4: To give an experience in the implementation of Engineering concepts which are applied in field of Geotechnical Engineering

COURSE OUTCOME:

The students after completion of the course will be able to,

- CV204.CO.1: grade engineering properties of soil based on index property by performing relevant experiments.
- CV204.CO.2: explain seepage and flow net.
- CV204.CO.3: choose suitable method for improvement in soil characteristics.
- CV204.CO.4: apply basic soil mechanics principle to calculate various stresses induced in soil.
- CV204.CO.5: calculate the stability of slope.

CV204.CO.6: evaluate bearing capacity of soils.

THEORY	<i>I</i>	
UNIT 1	Introduction to Soil and Site Investigation	6 HOURS
Introduction Soil structures structure) and Demo- Case Study Self Study:	on to Geotechnical Engineering, Introduction to soil. Properties of soil and their ure and classification systems. Weight volume relationship, (Study of working : Purpose and planning of subsurface exploration. Methods of Investigation, E SPT. v: Geotechnical investigation planning of subway projects in urban areas Three phase soil system	significance. model on soil)CPT, SCPT
UNIT 2	Permeability and Seepage	6 HOURS
Darcy's La Seepage an Construction Case Study Self Study:	 w, Validity of Darcy's Law, Laboratory and field tests for determination of ad Seepage Pressure, hydraulic gradient, Laplace equation, Flow Net, De on of model for flow net though earthen body. r: A Case Study on Seepage Failure of Hauser Lake Dam Introduction to permeability of soils. 	permeability. monstration:
UNIT 3	Compaction and Consolidation	6 HOURS
Introductic spring anal Case Study Self Study:	on to compaction, Field compaction methods (Site Visits). Introduction to coogy, Terzaghi's consolidation theory, Lab methods of compaction and consolidate: A case study on Soil Improvement with Heavy Dynamic Compaction compaction equipment's	consolidation, ation.
UNIT 4	Stresses In Soil and Shear Strength of Soil	12 HOURS
Stresses in Boussinesq Pressure-, T Shear Stren Shear stren Total stress Case Study Self Study:	Soil 's theory, Pressure bulb and Westergaard's theory, Contact Pressure distribu- Rankine's theory, Coulomb's Wedge theory. Ingth of Soil agth- an Engineering Property. Mohr-Coulomb failure theory. The effective str s, effective stress and neutral stress / pore water pressure. : Hai Phong City, Viet Nam Shear Resistance and Stability Study of Embank Introduction to stress and shear strength of soil	ution. Earth ess principle- ments.
UNIT 5	Stability of Slope	4 HOURS
Modes of s Case Study Self Study:	lope failure, Stability analysis finite and Infinite slope, Taylor's stability v: Soil nailing behaviour for slope stabilization Introduction to slope	
UNIT 6	Bearing Capacity of Soil and Foundation	6 HOURS
Bearing cap Settlement Case Study Self Study:	pacity of soil, bearing capacity analysis: list of methods and field tests, types of and its types, its causes and remedial measures. v: Investigation of Foundation Failure of a Residential Building. Types of Foundation	shear failure,

PRACTICA	LS/PROJ	ECT: Project should be perform in a group of 5 stude	ents			
PROJECT	Prepara	on of Soil mass 14 HOUR				
Prepare a sub g 1.85 gm/cc. Al: 1) Find water o 2) Calculate dr 3) Find and fix 4) Find require 5) Compact em Note: All tests OR Prepare trapeze available soil h permeability. Objective: 1) Find water o 2) Calculate dr 3) Find and fix 4) Find require 5) Compact em Note: All tests	grade of 1m so find for a content, Sp. y density a the gradat d W.C. to a bankment must follow oidal shape aving dry a content, Sp. y density a the gradat d W.C. to a bankment must follow	A X 1m X 0.15m with well graded locally available soil having of atterberg's limits and coefficient of permeability. Objective: . Gravity, and Bulk Density of Borrow soil ind required quantity of borrow soil ion of soil compact soil embankment at given dry density at site v relevant I.S. codes e hearting of an earthen dam of given dimension using well g density of 1.85 gm/cc. Also check for atterberg's limits and . Gravity and Bulk Density of Borrow soil ind required quantity of borrow soil ion of soil compact hearting at given dry density at site v relevant I.S. codes	dry density of graded locally coefficient of			
PRACTICA	L NO.01	Shear strength of the soil 2 HOUR				
To find the unc	confined cor	npressive strength of cohesive soil				
PRACTICA	L NO.02	Shear strength of the soil	2 HOURS			
To find the she	ar strength	parameters of the soil by direct shear test				
PRACTICA	L NO.03	Shear strength of the soil	2 HOURS			
To find the She	ar strength	of cohesive soil using vane shear test				
PRACTICA	L NO.04	Shear strength of the soil	2 HOURS			
To find the She	ar strength	of cohesive soil using triaxial shear test				
PRACTICA	L NO.05	Consolidation of soil	2 HOURS			
To find the con	solidation t	test on soil using oedometer				

TEXT BOOK

- Gopal Ranjan and A. S. Rao, "Basic and Applied Soil Mechanics", G. K. Publications Pvt. Ltd, Dec. 2006, ISBN : 978-81-224-1223-9
- 2. V. N. S. Murthy, "Soil Mechanics and Foundation Engineering", B. S. Publications, Dec 2009, ISBN 0 324 06680 5.
- B. C. Punmia, "Soil Mechanics and Foundation Engineering", Laxmi Publishing Co, Dec. 2005, ISBN: 81-7008-081-9.
- 4. Dr. K.R. Arora, "Soil Mechanics and Foundation Engineering", (8th Edition) 2015, Standard Publishers, ISBN:81-8014-112-8

- Joseph E Bowles, "Engineering Properties of Soils And Their Measurements", McGraw Hill Publications, 1992, ISBN: 0070067783, 9780070067783.
- Palanikumar. M, "Soil Mechanics", PHI Learning Private Limited, 2013, ISBN: 978-81-203-4838-7
- 3. R. F. Craig "Craig's Soil Mechanics", E and FN Spon an imprint of Chapman and Hall, 2012, ISBN: 0-415-32702-4, 0-415-32703-2.
- 4. Venkatramaiah, C. Geotechnical Engineering, (3rd edn.) New Age International Publishers, New Delhi, 2006.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)
SECOND YEAR BACHELOR	COURSE NAME	Building Design & Construction
	COURSE CODE	CV205
	COURSE CREDITS	4
RELEASE DATE : 01/07/2020	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK)		THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	Nil	150

PRE-REQUISITE : Engineering Graphics

COURSE OBJECTIVES:

CV205.CEO.1: To implement the various building by laws.

CV205.CEO.2: To know the different rules and regulation for development of any area

CV205.CEO.3: To identify the different types of building materials and components.

CV205.CEO.4: To understand the green building concept and terminologies.

COURSE OUTCOMES:

The students after completion of the course will be able to,

- CV205.CO.1: design functionally a single/multi-storied building for various components of residential/commercial units.
- CV205.CO.2: implement relevant by e laws in functional design of buildings in a prescribed locality in India.
- CV205.CO.3: select suitable types of basic building material and masonry used for construction of various types of buildings
- CV205.CO.4: explain various components of buildings namely forms of floors, roofs, doors, windows, arches, lintels, staircases.
- CV205.CO.5: select suitable type of formwork and scaffolding.

CV205.CO.6: describe green building concept and Rating Systems.

THEORY	ζ	
UNIT 1	Introduction to Building and Planning	7 HOURS
Definition a foundation, Convention safety)	and different types of buildings. Components of buildings. Types of structure, Principles of Planning and Design. Rules for ventilation, lighting .Types as as per IS 962. (Self-Study : DCPR: Provisions for high rise development as	re. Types of of drawings. nd structural
UNIT 2	Bye Laws and Legal Aspects	7 HOURS
A. Necessit area calcula B. Differen permissions (Self-Study	y of bye laws. Different rules and regulation according to NBC and IS. Types ations. t permissions and certifications required before, during and after building of s and procedure for land acquisitions. : Introduction RERA)	of areas and construction,
UNIT 3	Masonry Construction	6 HOURS
Brick maso CLC, ACC (Self-Study	nry: types of bonds, construction procedure and supervision, Block masonry: H, cavity wall construction, Pointing and Painting Purpose, types and procedure : Stones masonry: procedure for UCR and CR masonry)	Iollow, Solid, e,
UNIT 4	Building Components	6 HOURS
A: Doors a B: Floors a types, desig (Self-Study	nd Windows: Types, materials used, purposes. and Roofs: Types, materials used, purposes. Lintels: Need and types of lint gn. : Arches: principle of arch action, types of arches, method of arch construction	els,Staircase: on)
UNIT 5	Formwork and Scaffolding	6 HOURS
Formwork: erection an Scaffolding (Self-Study	Timber, Aluminum, Mivan and Plastic, Slip form work: component parts, Fd checking of formwork.: Purpose, types and suitability.: Introduction and types of basic building materials)	Procedure for
UNIT 6	Green Building	4 HOURS
Concept of (Self-study	green building, Salient features, Materials, Planning, Rating Systems- LEED, : BREEAMS, Green Building challenge Assessment Framework)	GRIHA.

PRACTICALS/PR	OJECT: Project should be perform individually	
PROJECT NO.01	Residential building	18 HOURS
Draw following plans of meter also minimum or software (AutoCAD) an Lay out plan Line Plan Development Elevation. Section. Foundation Plan	a G+1 residential multistoried building having minimum B/U ar ne cantilever projection and overhead water tank required by us ad prepare brochure containing following drawings	ea 125 square ing computer
PRACTICAL NO.0	1 Commercial or Public building	6 HOURS
Draw line plans of two	different commercial or public building with scale $1:50$ or $1:100$ (l	hand sketch)
PRACTICAL NO.0	2 Site Visit	4 HOURS

Site visit and technical report on the visit (Minimum Two). (Visit should contain Stage of visit, related sketches of components-C/S-Dimensions, Materials used, site plan sketch and detailed report etc.)

TEXT BOOK

- 1. Punmia B.C., Building Construction, Laxmi Publications Delhi, sixth edition, 2009, ISBN: 81-7008-053-3
- 2. Shaha M.G., Kale C.M., Principles of Building Drawing, Macmillan Publishers India Limited, Fourth edition, 2010, ISBN-0333925467
- 3. Duggal S. K., "Building Materials", New Age International Limited, First Edition, 2003, ISBN -81222414354

- 1. Shah, kale and Patki, "Building Drawings with an Integrated Approach to Build Environment", Tata McGraw Hill Publications, Fifth edition, 2015, ISBN- 0071077871
- 2. Rangwala, "Civil Engineering Drawing", Charotar Publications, First Edition, 2017, ISBN 9789385039300
- 3. Rangwala, "Building Construction", Charotar Publications, 33rd Edition, 2017, ISBN 978-93-85039-04-1

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)
SECOND YEAR BACHELOR	COURSE NAME	Mechanics of Solids
	COURSE CODE	CV206
	COURSE CREDITS	4
RELEASE DATE : 01/07/2020	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS							
(HOUR	(HOURS/WEEK)		THEORY TUTORIAL/ PRESENT			THEORY		PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION			
3	2	35	35	30	50	NIL	150		

PRE-REQUISITE : Applied Mechanics

COURSE OBJECTIVES:

CV206.CEO.1: To analyze axially loaded bars, beams, columns and shafts subjected to torsion.CV206.CEO.2: Learner should be able to identify most critical locations, planes and critical direct and shear stresses for various loading scenarios on different types of structures.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV206.CO.1: enlist and explain different types of actions on a structural component[Understand].

- CV206.CO.2: draw axial force diagrams for axially loaded members, shear force diagrams and bending moment diagrams for statically determinate beams and twisting moment diagram for statically determinate shafts[Apply].
- CV206.CO.3: Draw bending stress distribution diagram for beams and shear stress distribution diagrams for beams and shafts. [Apply].
- CV206.CO.4: Calculate load corresponding to elastic instability for columns with various end conditions[Apply].
- CV206.CO.5: Calculate principal stresses and absolute maximum shear stresses at various locations of a structural component using analytical method and Mohr's circle whichever is suitable[Analyse].

CV206.CO.6: Select particular shape of cross section to economically carry calculated bending/shear stresses under flexure/shear[Evaluate]

THEORY

UNIT 1 Linear elasticity

Deformation and strain, concept of the stress, constitutive matrix for isotropic matrix, strain energy, composite sections subjected to axial/flexure/temperature loading

Simulation/ Demonstration : compute change in stress strain and volume using excel or any suitable computational program.

UNIT 2 Axially loaded bars and torsion of shafts 6 HOU
--

Axial force diagram, deformation of axially loaded bars, axially composite bars, composite bars subjected to temperature change, twisting moment diagram, torsion formula, angle of twist, torsion of prismatic shafts, shear stress distribution.

UNIT 3	Shear force diagram and bending moment diagram	8 HOURS

Introduction, relations between shear force diagram and bending moment at a section, forward and reverse problems.

Case studies: Observe locations of flexure and flexure-shear failures in the beams and correlate them with shear force diagram and bending moment diagram.

Field studies: Shapes of beams in steel structures/ RCC structures, amount of steel and its correlation with variation of bending moment.

UNIT 4 Stresses in beams

Bending formula, bending stress distribution and shear stress distribution in a beam, economic shape of cross section of beam to maximize moment of inertia.

Programming: compute bending and shear stresses at all locations in the prismatic or non-prismatic beams with various support conditions and for complex loading pattern.

Reading: Research papers related with bending and shear stress in prismatic cross sections.

'Suggested': Reflections on following research paper, 'Minamino R and Tateno M, 2014, Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models. PLoS ONE Volume 9, issue 4

Principal planes and principal stresses UNIT 5

State of stress, state of pure shear, direct state of stress, analytical and graphical method of finding principal planes and principal stresses, maximum in-plane shear stress, absolute maximum shear stress. Simulation/ Demonstration : finding out critical planes and maximum shear and normal stresses in beams and shaft (under twisting) problems using any computational program.

UNIT 6 Columns

Stability of columns, Euler buckling of columns, Rankine's and Jhonson's interpretations of critical load on column, eccentric load, initially imperfect columns.

Reading: Research papers related to 'inelastic stability of prismatic members'.

Suggested: Reflections on 'how high the trees can grow? 'Karl J N, 2006, Maximum plant height and the biophysical factors that limit it, Tree Physiology, Vol. 27, pp 433-440 '

6 HOURS

8 HOURS

8 HOURS

6 HOURS

PRACTICALS: Experimental study may be checked using MATLAB or Excel						
PRACTICAL NO.01	Tension test on metals.	4 HOURS				
Tensile strength of steel (M.S And TOR Steel)						
PRACTICAL NO.02	Bending test	6 HOURS				
Four point monotonic and	half cyclic bending test on timber/concrete beam/steel beam.					
PRACTICAL NO.03	Torsion test on metals.	2 HOURS				
Torsion test on metals like	e aluminum, Mild steel specimens					
PRACTICAL NO.04	Buckling test of column.	4 HOURS				
Buckling tests on columns with different end conditions						
PRACTICAL NO.05 Desk experiments 6 HOUR						
Stiffness of spring, and effect of various combination of springs.						
PRACTICAL NO.06 Simulation using MATLAB/ Excel 2 HOURS						
Using MATLAB/ Excel make simulation for the specimen tested in experiment no. 1, 2 and 3.						

TEXT BOOK

- 1. Beer F P, J. E. Russell Johnston, John T. DeWolf, and David F. Mazurek, Mechanics of Materials, McGraw-Hill, 7th edition, 2014, ISBN : 9780073398235
- Gere J. M. and Timoshenko S. P., Mechanics of Materials, Boston: PWS Kent Publishing, 5th edition, 1970, ISBN: 9788123908946
- S. S. Bhavikatti, Strength of Materials, Vikas Publishing House, 4th Edition, 2013, ISBN : 978-93259- 7157-8
- 4. S. Ramamrutham, R. Narayanan, Strength of Materials, Dhanpat Rai Publishing Company,9th edition, 2017, ISBN 13: 978-9352164387.

- 1. Nash W. A., Strength of Materials, Schaum's Outline Series, McGraw-Hill, 1994, 3rd edition, ISBN: 9780070843660
- 2. R.C.Hibbeler, Mechanics of materials, Prentice Hall, 2011, 8th edition, ISBN: 9780134321233
- 3. Egor P. Popov, Engineering Mechanics Of Solids, Pearson , 2nd Edition, 2010, ISBN: 9788178085357

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF ELECTRICAL ENGINEERING	W.E.F	AY: 2020 - 2021 (R2019)	
SECOND YEAR BACHELOR	COURSE NAME	Rapid Prototyping	
OF TECHNOLOGY	COURSE CODE	ET235	
	COURSE CREDITS	2	
RELEASE DATE : 01/07/2020	REVISION NO	1.0	

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	4	NIL	NIL	25	NIL	50	75

PRE-REQUISITE : ME104 - Engineering Graphics, EX102 - Electrical and Electronics Engineering, CV102 - Applied Mechanics

COURSE OBJECTIVES:

ET235.CEO.1: To learn about materiality and techniques.

ET235.CEO.2: To justify the product development cycle through prototype project.

ET235.CEO.3: To inculcate implementation of skills by proper budget planning with effective troubleshooting and practices in aesthetics & ergonomics.

ET235.CEO.4: To develop abilities to transmit technical information clearly and test the same by delivery of presentation based on the prototype Project.

COURSE OUTCOMES:

The students after completion of the course will be able to,

ET235.CO.1: Consolidate the techniques, skills and modern engineering tools.

ET235.CO.2: Apply acquired skills to the construction of a prototype project.

ET235.CO.3: Develop a prototype project by performing tasks in team.

ET235.CO.4: Demonstrate the work carried out in a team.

PRACTICAL

Course Introduction:

This course is aiming at a Project Based Learning methodology. Through a series of projects, students will learn to design, build, and debug engineering prototype systems. They will cover multiple aspects of the prototyping process.

Students will complete four modules in rotational manner,

- 1. Mechanical Prototyping (MP)
- 2. Civil Prototyping (CP)

In Mechanical prototyping, students will learn rapid prototyping skills. Students will focus on basics of CAD modeling, hands on practice on CAD software, 3D Modeling , 3D Printing, Fabrication of prototype and testing etc.

On the contrary in civil prototyping students will learn developing bamboo structures by testing and analyzing bamboo, designing bamboo joinery, and testing of bamboo structures.

Each module will have on an average six laboratory sessions. The students will complete them in rotational manner. Every module will award for 75 marks.

Marks of two modules at a time will be averaged in one semester and if student secures passing marks (passing grade) after averaging; then the required credits of the course will be earned.

For Rapid Prototyping, Semester - III

Module	Programs
a) Mechanical Prototyping (MP)	SV BTECH Civil Engineering Mechanical Engineering
b) Civil Prototyping (CP)	Chemical Engineering

For Digital Prototyping, Semester - IV

Module	Programs
a) Mechanical Prototyping (MP)	SV BTECH Electronics Engineering Electronics &
b) Civil Prototyping (CP)	Telecommunication Engineering, Computer Engineering, Infor- mation technology

MODULE: 1/2 Mech	anical Prototyping (MP)	28 HOURS				
PRACTICAL:						
PRACTICAL NO. 01 Introduction to prototyping 04 HOURS						
1. Introduction to different types of pro- their working princip	erent prototyping, traditional prototyping vs. advance rapid ptotyping techniques (clay modeling, casting, carpentry, metal ple.	1 prototyping, l art etc.) and				
2. Different types of ma	aterials used in prototyping model.					
3. Introduction of mult	i axis (4D and 5D) machines used in prototyping and machine	ing.				
4. Making of paper pro	totyping (virtual or physical).					
5. Applications and nee aerospace etc.	d of prototype in emerging field like Bio - medicals, defense, n	nanufacturing,				
PRACTICAL NO. 2a	Basics of CAD modeling	04 HOURS				
1. Introduction of CAD	software.					
2. Introduction of 2D, 3	BD Modeling using CAD software package.					
3. Hands on practice of	CATIA or any other CAD software.					
4. Formation of student	s group per project team.					
DDACTICAL NO. 81						
PRACTICAL NO. 26	3D Modeling for prototyping	04 HOURS				
1. Introduction of 3D m	nodelling and its interaction with prototype machine					
2. Identify physical con	straints of prototyping.					
3. Sketcher-workbench	and its applications					
4. Part design workber	nch.					
5. Preparation of 3D prototyping model by CAD software for final project						
PRACTICAL NO. 03	Preprocessing of 3D printing slicing	03 HOURS				
1. Generating STL files of 3D models from CAD software & working on STL files.						
2. Pre-Processing the 3D Model in Cuba software / kisslicer - repeater for slicing.						
3. Selection of orientation of model, support generation, skin and wall thickness- depth setting.						
4. Setting of printing speed, flow rate, volume, mass and time require for printing or manufacturing.						
5. Practice of slicing on 3D Cad model and decide optimize parameters.						

PRACTICAL NO. 04 Orientation and support generation, manufacturing 03 HOURS planning 04 HOURS

- 1. Suitable filament material for 3D printing and selection and its properties.
- 2. Selection of material and process for making physical models by other tradition methods (machining, wood, clay, paper, polymer, etc).
- 3. Slicing pattern, tool path generation, G Code and gives input to prototype machine for actual part/object manufacturing.

PRACTICAL NO. 05 Manufacturing and fabrication of model 06 HOURS

- 1. Introduction 3D printer machines, and other machines used for prototyping.
- 2. Demonstration of 3D printing machine pre-setting and filament material loading.
- 3. Hands on experience of rapid prototype machine for part/object/model, manufacturing of conventional prototype model if any, assembly if required.
- 4. Calculation of cost of product, financial aspect, Bill of material (BOM), testing for prototyping, Plan to promote product/model in market, etc.

PRACTICAL NO. 06 Project presentation 02 HOURS

- 1. Final Presentation and demonstration of models.
- 2. Report submission (assessment).

- Rapid Prototyping: Principles and Applications in Manufacturing, Chua C K, Leong K F, Chu S L, World Scientific, ISBN-13: 978-9812778987.
- Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Gibson D W Rosen, Brent Stucker, Springer, ISBN: 978-1-4419-1119-3.
- 3. Rapid Prototyping: Principles and Applications in Manufacturing, Noorani R, John Wiley & Sons, ISBN: 978-0-471-73001-9.
- 4. Rapid Tooling: Technologies and Industrial Applications, Hilton P, Jacobs P F, CRC press. ISBN:978-0824787882
- 5. Rapid Prototyping and Engineering applications: A tool box for prototype development, Liou W L, Liou F W, CRC Press, ISBN: 978-0849334092.
- 6. Rapid Prototyping: Theory & practice, Kamrani A K, Nasr E A, Springer, ISBN: 978-0-387-23291-1.
- Kenneth Cooper, Rapid Prototyping Technology: Selection and Application, Marcel Dekker, Inc. New York, ISBN: 082470261.

MODULE: 2/2 Civil	28 HOURS					
PRACTICAL:						
PRACTICAL NO. 01 Introduction to civil prototyping						
Introduction of bamboo, its physical, mechanical properties, selection, seasoning and treatment, case studies of bamboo structures.						
PRACTICAL NO. 02	Testing & Analysis of Bamboo	04 HOURS				
Study of different test on I	Bamboo & Analysis of structures made by bamboo.					
PRACTICAL NO. 03	Design of bamboo Joinery	04 HOURS				
Study of different bamboo structures, Hands on different types of joinery, axial and angular joints by different methods						
PRACTICAL NO. 04	Making bamboo structures	08 HOURS				
Making of bamboo structures						
PRACTICAL NO. 05 Testing on bamboo structure (Post Testing)		04 HOURS				
Testing of different bamboo structures						
PRACTICAL NO. 06 Final project presentation 04 HOUI						
Comparative study of analytical and test results of the hamboo Structure, final project presentation						

- 1. Vector mechanics for Engineers: statics and dynamics by Beer & Johnston 10th edition, McGraw Hill Education , ISBN: 978-0073398242
- Bamboo Architecture & Design (Architecture & Materials), by Chris van Uffelen, , ISBN: 978-3037681824
- 3. Designing and Building with Bamboo ,Jules J.A. Janssen Technical University of Eindhoven Eindhoven, The Netherlands, ISBN 978-8186247464
- 4. Codes and standards:
 - IS 1902:1993.Code of Practice for preservation of bamboo and cane for non-structural purposes.
 - IS 6874:1973 Methods of test for round bamboos
 - IS 7344:1974 Specification for bamboo tent bamboos.
 - IS 8242:1976 Methods of tests for split bamboos
 - IS 8295 (Part 1): 1976 Specification for bamboo chicks
 - ISO 22157 Standard guidelines for tensile, compressive, shear and bending Strength Parallel to grain and Perpendicular to grain.

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021 (Rev. 2019)	
SECOND YEAR BACHELOR	COURSE NAME	Minor Project- Design	
	COURSE CODE	CV230	
	COURSE CREDITS	1	
RELEASED DATE : 01/07/2020	REVISION NO	1.0	

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	2	NIL	NIL	NIL	NIL	50	50

$\mathbf{PRE}\text{-}\mathbf{REQUISITE:}\operatorname{NIL}$

COURSE OBJECTIVES:

CV230.CEO.1: To categorize and define a problem to be solved.

CV230.CEO.2: To realize the ethical principles in general and its importance.

CV230.CEO.3: To make the students aware of project requirement analysis, design and planning.

CV230.CEO.4: To appreciate the importance of documenting and ethics of writing.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV230.CO.1: Delineate the problem to be solved.

CV230.CO.2: Comprehend the paramount of the health, safety and welfare of the public in the practice of engineering profession.

CV230.CO.3: Embark project planning and design.

CV230.CO.4: Inculcate problem solving skills and critically analyze the options available to solve the problem.

CV230.CO.5: Cognize the importance of documentation and report writing.

COURSE ABSTRACT

It is a need of the time to pay attention to the societal needs by an engineering graduate to solve some of the real life societal problems by providing affordable technological solutions. The concept of the minor project follows the same theme. The minor project aims to identify the problems from the society and develop the solutions for the same using science and technology for the betterment of society or human life. This will help students to understand the process of product/project development, best practices and encourage their creativity to solve real life problems. The students will learn effective team building, designing, budgeting, planning, engineering skills and processes, safety norms and standards while developing the application/ product. The students will be able to understand importance of documentation and professional ethics.

Guidelines

- 1. Every student shall undertake the Minor Project in semester III and IV.
- 2. Every student shall work on an approved project, a group of 03/04 students (maximum) shall be allotted for each minor project.
- 3. The group members may be from different programme to support the interdisciplinary functioning.
- 4. The students have to identify the problem by discussion with various stakeholders, site visits, expert-opinions and various research articles.
- 5. Collect the sufficient data and survey to establish the criticality of the problem to be solved.
- 6. Apply various tools for project planning and design.
- 7. Critically analyze various solutions/techniques to solve real world problems.
- 8. Select and justify one of the solutions identified based on the feasibility, affordability and ease of use.
- 9. Learn and apply standards of engineering ethics and professional behavior.
- 10. Adherence to the highest principles of ethics, conduct and practices.

TIMELINE

The four member jury/committee will be appointed to monitor the progress and continuous evaluation of each project. One of the member will be the project guide. Assessment shall be done jointly by the guide and jury members.

- 1. Formation of Project Group: 2 Weeks $(1^{st} \text{ week and } 2^{nd} \text{ week})$
- 2. Finalizing title, feasibility study and approval: 3 Weeks $(3^{th} \text{ week to } 5^{th} \text{ week})$
- 3. Engineering Ethics: 3^{rd} week
- 4. Project Review 1 Presentation: 6^{th} week
- 5. Analysis and Design of the Project: 3 Weeks $(7^{th} \text{ week to } 9^{th} \text{ week})$
- 6. Project Review 2 Presentation: 10^{th} week
- 7. Report Writing, Documentation and Presentation: 2 Weeks $(11^{th} \text{ week and } 12^{th} \text{ week})$
- 8. Project Review 3 Presentation: 13^{th} week (Assessment by Guide)
- 9. Final Evaluation/Examination Presentation: 14^{th} week

Project Demonstration (50 Marks)

- 1. Review 1 (Problem Statement and Literature Survey) (10 marks)
- 2. Review 2 (Project Modeling and Designing) (10 marks)
- 3. Project Activities (10 Marks)
 - Quiz on Ethics
 - Drafting of Literature Review and Synopsis
 - Project Planning and Design
- 4. Review 3 (Project Documentation) (10 marks)
- 5. Final Demonstration & Presentation (10 marks)

WEEK NO	INSTRUCTIONS	STUDENT'S GROUP ACTIVITIES	EXPECTED OUTCOME
Week 1	Introduction to different forefront areas available within the School. Discussion on innovative application in domain area and resources such as Books, Blog, Publication Houses	To search the domain area of interest	At least 4 subtopics in area of interest (Template I)
Week 2	To brief at least two Innovative products with complete details and their Evolution	To search the domain area/innovative products of interest	Search in area of in- terest (Template II)
Week 3	Ethics, Morals, Values and In- tegrity, Work Ethic, Civic Virtue, Senses of Engineering Ethics, Busi- ness Ethics, Media Ethics, Environ- mental Ethics, Bio Ethics, Com- puter Ethics, Research Ethics	Graded Activity Quiz on Engineering Ethics	Understand the Ethics of an En- gineer (Template III)
Week 4	Introduction to Research publica- tion, its type, science citation in- dex, methods to search Journals. Introduction to Ethics of writ- ing(Plagiarism)	Search domain related five papers (from Journal Pa- per, Conference paper, Technical report, Manual, Thesis)	Student will learn searching SCI jour- nal and understand Ethics of writing
Week 5	Presentation on how to make Project Presentation. Title, prob- lem statement, objective, Scope etc (Select suitable topic of domain and explain it as per the template-IV)	Graded Activity on back- ground study (market sur- vey, customer survey, lit- erature Survey) of domain area of interest	Drafting literature review and Synopsis (Template IV)
Week 6	NIL	Project Review 1 Presen- tation	Problem Definition and Objectives

WEEK NO	INSTRUCTIONS	STUDENT'S GROUP ACTIVITIES	EXPECTED OUTCOME
Week 7	Guidelines and tools for Analysis and Design of the Project and prob- lem solving sessions	Analysis and Design of the Project	Best practices for Analysis and Design
Week 8	Guidelines and tools for the Project Planning, Introduction to Block Di- agram, System Architecture	Make use of Project Plan- ning Tools and Design Tools	Best practices for Project Planning and Design
Week 9	 Presentation, discussion and doubt clearing based on Working on Algorithms Working on Design/ System Architecture Working on Analysis/ CAD modeling 	Graded Activity on Project Design and Planning	Best practices of Project Planning and Design
Week 10	NIL	Project Review 2 Presen- tation	Project Planning, Design of a solution
Week 11	Guidelines and tools for report writ- ing	Project Report Writing	Effective Report Writing Practices
Week 12	How to give effective presentation on project	Report Writing and Pre- sentation	Effective Documen- tation of the Project
Week 13	NIL	Project Review 3 Presen- tation	Final Report and Presentation
Week 14	NIL	Examination: Final Demonstration and Pre- sentation	Problem Statement, Objectives, Design and Planning

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)	
SECOND YEAR BACHELOR	COURSE NAME	Skill Development Course I - Excel	
	COURSE CODE	CV231	
	COURSE CREDITS	2	
RELEASE DATE : 01/07/2020	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	,	THEORY TUTORIAL/ PRESENTATION/ TO				TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
	4	NIL	NIL	25	NIL	50	75
NIL							

PRE-REQUISITE : NIL

COURSE OBJECTIVES:

CV231.CEO.1: To know the difference between a workbook and a worksheet

CV231.CEO.2: To use basic statistical functions

CV231.CEO.3: To understand basic chart functionality

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV231.CO.1: examine spreadsheet concepts and explore the Microsoft Office Excel environment.

CV231.CO.2: understand basic operators and the order of operations

 $\mathrm{CV231.CO.3:}$ learn what a function is, and the syntax of a function

 $\mathrm{CV231.CO.4:}$ apply basic math functions and logical operation

CV231.CO.5: creating Scripts in Worksheet for Auto-cad sheet

PRACTICALS/PROJ	ECT:				
PRACTICAL NO.01	Introduction to Microsoft Excel	2 HOURS			
Worksheet and Workbook, Ribbon, Setting the colour theme, Settings for formulas, Proofing settings, Data Type, Formula, Built-In Function, Data Formatting, Making Charts.					
PRACTICAL NO.02	Excel Functions	2 HOURS			
Common functions, Nume tools	ric Functions, String functions, Date Time Functions, VLOOKU	P functionon			
PRACTICAL NO.03	Sorting and Filtering	2 HOURS			
Hiding rows and columns,	Basic sorting in Google Sheets, Sorting with multiple criteria, file	tering			
PRACTICAL NO.04	Creating Macro	4 HOURS			
Control Structures, Struct	ure of Program, Chart Macro, Manipulation on Program Steps				
PRACTICAL NO.05	Matrix Program	2 HOURS			
Types of Matrix, Matrix (Operation, Program for Matrix Operations				
PRACTICAL NO.06	Auto-cad Script File	2 HOURS			
Creating Scripts in Works	heet				
PRACTICAL NO.07	What If Analysis	2 HOURS			
Goal Seek, Data Tables, S	cenario Manager				
PRACTICAL NO.08	Charts	2 HOURS			
Using Charts, Formatting Charts, Using 3D Graphs, Using Bar and Line Chart together, Using Secondary Axis in Graphs, Sharing Charts with PowerPoint / MS Word, Dynamically, (Data Modified in Excel, Chart would automatically get updated)					
PRACTICAL NO.09	Working with Templates	2 HOURS			
Designing the structure of	a template, Using templates for standardization of worksheets				

ACTIVITIES- 20 HOURS (1 Hour for each activity)

- 1. Determination of water content
- 2. Mechanical sieve analysis
- 3. Classification of fine grained soil
- 4. Data of Characteristic compressive strengths of concrete cubes
- 5. Determination of shear strength of soil
- 6. Draw SFD and BMD
- 7. Mohr circle
- 8. Calculating travel time based on GPS coordinates
- 9. Produce complex AutoCAD drawings
- 10. AutoCAD Excel Data
- 11. Creating Autocad script in worksheet
- 12. Designing the organisation chart of MITAOE
- 13. Creating Own Excel Templates
- 14. Monthly expense sheet
- 15. Daily / weekly / monthly activity planner
- 16. Gantt chart
- 17. EMI sheet
- 18. Future value of money
- 19. Student marks datta
- 20. Generating forms (Attendance letters)

TEXT BOOK

- 1. Gunthar Pangaribuan, Aplikasi Excel untuk Rekayasa Teknik Sipil, Penerbit PT. Elex Media Komputindo, Jakarta.
- 2. William Weaver, Jr., James M. Gere, Matrix Analysis of Framed Structures, Second Edition, Van Nostrand Reinhold Company, New York.

- 1. Walkenbach, J. (2010). Excel 2010 formulas. Wiley Pub.
- 2. Jeschke, E., Reinke, H., Unverhau, S., and Pfeifer, E. (2011). Microsoft Excel 2010 Formulas and Functions Inside Out. Pearson Education.

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)	
SECOND YEAR BACHELOR	COURSE NAME	Skill Development Course I - Revit	
	COURSE CODE	CV232	
	COURSE CREDITS	2	
RELEASE DATE : 01/07/2020	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
	4	NIL	NIL	NIL	50	25	75
NIL							

PRE-REQUISITE : Engineering Graphics

COURSE OBJECTIVES:

CV232.CEO.1: To Learn and get familiar with Autodesk Revit Architecture.

CV232.CEO.2: To Understand concept and technique in the 2D and 3D modeling.

CV232.CEO.3: To be able to provide complete rendering and animation

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV232.CO.1: describe building information modeling methodology and its benefits.

CV232.CO.2: draw all Architectural components.

CV232.CO.3: design detail views, add 3D and 2D elements and detail components.

 $\mbox{CV232.CO.4:}$ create construction documentation.

PRACTICALS/PROJECT: Project should be performed individually					
PRACTICAL NO.01	BUILDING INFORMATION MODELING	4 HOURS			
• Building Information Modeling for architectural					
PRACTICAL NO.02	REVIT ARCHITECTURE BASICS	4 HOURS			
 Understanding Revit elex Revit Architecture user if The ribbon framework Guidelines for using the Using Common modifical Assignment 1 : Questional 	ment hierarchy interface interface tion tools ries' on BIM				
PRACTICAL NO.03	VIEWING THE MODEL	4 HOURS			
 About Views View Properties Guidelines for Working v About Controlling Object View Templates Using Filters Guidelines for Controlling About Elevation and Sect Guidelines for Working v About 3D Views Perspective view About Cameras Creating and Modifying Axonometric view 	with Views et Visibility og Object Visibility etion Views with Elevation and section views Camera Views				
PRACTICAL NO.04	STARTING A NEW PROJECT	4 HOURS			
 About Projects Creating Project Templa Guidelines for Creating I About Levels Adding and Modifying L Guidelines for Adding an About Grids Methods of Creating and Guidelines for Creating and Assignment 2 : Questional 	ates Project Template Files evels ad Modifying Levels d Modifying Grid Lines and Modifying Grids ries' on REVIT architecture				

PRACTICAL NO.05	WALLS AND CURTAIN WALLS	6 HOURS
 Creating generic walls Sketching walls Hosting element in walls Modifying walls Editing walls Creating curtain walls Adding curtain grids, mr Modifying curtain walls Editing curtain walls str Assignment 3 : Draft mod 	ullions and panel ucture lels of building with Walls.	
PRACTICAL NO.06	FLOORS AND ROOFS	4 HOURS
 About floor elements Process of adding a floor Sketching floors Editing Floors About roofs Process of sketching root Roof modification and et About Ceiling elements Creating ceiling Editing ceiling Assignment 4 : Add floors 	r element fs xample , roofs and ceiling to drafted model.	
PRACTICAL NO.07	STAIRS AND RAILINGS	4 HOURS
 About stairs and railing Process for creating a st Process for creating a st Creating the generic rail Assignment 5 : Add Staire 	aircase by component aircase by sketch ing cases and railings at different locations in model ADDING FAMILIES and ROOMS AND COLOR	4 HOURS
	FILL PLANS	
 Adding families Loading families Placing families Placing families in projet Tagging spaces with root Room tags Room Boundaries Room separation line Generating color rooms Assignment 6 : Add families 	ct m tags plan ies in plan to create color floor plan, furniture plans, etc.	

PRACTICAL NO.09	CREATING PLAN ANNOTATION AND SCHED- ULES	4 HOURS				
• About Temporary Dimensions						
• About Permanent Dime	nsions					
• About Spot Dimension	Symbols					
• Guidelines for Adding D	Dimensions					
• Exercise: Add Dimensio	ons and Spot Symbols					
• About Text						
• Setting Text Placement	Parameters					
• About Legends						
• Guidelines for Creating	Legends					
• About Schedules						
• Working with Schedules						
• Guidelines for Working	with Schedules					
Assignment 7 : Add anno	tations in plans and create schedule documents for different con	nponents.				
TUTORIAL NO.10	CREATING CONSTRUCTION DOCUMENTATION	4 HOURS				
• About Sheets and Title	blocks					
• About Revision Tracking	g					
• Process of Creating She	ets by using customized title blocks					
• Creating Revision Cloud	ls					
• Print settings						
• Print setup setting						
• Guidelines for printing sheets						
• Setting for exporting con	ntent					
• Process of exporting vie	ws to CAD formats					
• Guidelines for exporting	content to CAD formats					
Assignment 8 : Prepare al	ll working and commercial plans along with walkthrough video.					

PRACTICALS/PROJECT: Project should be performed individually

PROJECT Draw, Design and Develop Residential building Model

Draw, Design and Develop G+1 residential multistoried building having minimum B/U area 125 square meter also minimum one cantilever projection and overhead water tank, by using computer software (REVIT). Also prepare commercials Brochure and a Walkthrough video showing internal and external details of building.

Objectives :

- 1. Prepare all types of submission plans for a building namely :
- a. Lay out plan
- b. Development Plan
- c. Elevation Plans from all sides
- d. Section plans
- e. Foundation Plan
- 2. Compose a brochure containing all types of commercials plans for a building namely:
- . Colored floor Plans
- b. Axonometric Plans
- c. 3D Views
- d. Perspective Views
- 3. Prepare basic schedules for different materials used.
- 4. Compose a Walkthrough video showing internal and external details of building.
- 5. Present and demonstrate a building prepared in REVIT

TEXT BOOK

- 1. Autodesk Revit Architecture Essentials User Guide Manual.
- 2. Punmia B.C., Building Construction, Laxmi Publications Delhi, sixth edition, 2009, ISBN: 81-7008-053-3
- Shaha M.G., Kale C.M., Principles of Building Drawing, Macmillan Publishers India Limited, Fourth edition, 2010, ISBN-0333925467
- 4. Building Services Handbook, Routledge Publication, 7 edition, 2013, ISBN-10: 0415631408
- 5. Duggal S. K., "Building Materials", New Age International Limited, First Edition, 2003, ISBN -81222414354

- 1. Shah, kale and Patki, "Building Drawings with an Integrated Approach to Build Environment", Tata McGraw Hill Publications, Fifth edition, 2015, ISBN- 0071077871
- 2. Rangwala, "Civil Engineering Drawing", Charotar Publications, First Edition, 2017, ISBN 9789385039300
- Building Services Design Management , Wiley-Blackwell Publication, 1 edition, 2014, ISBN-10: 9781118528129
- 4. Rangwala, "Building Construction", Charotar Publications, 33rd Edition, 2017, ISBN 978-93-85039-04-1
- 5. Additional learning from YouTube channel BIMscape The Complete Beginner's Guide to Autodesk Revit Architecture (https://www.youtube.com/watch?v=hyKGzX4lSg and list=PLbJykfQm9O8cArlgixHjUnHI4QLbTZpV3)

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)	
SECOND YEAR BACHELOR	COURSE NAME	Environmental Science	
	COURSE CODE	CV203	
	COURSE AUDIT	1	
RELEASE DATE : 01/07/2020	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
-	2	-	-	-	-	-	-

PRE-REQUISITE:

COURSE OBJECTIVES:

CV203.CEO.1: Create awareness about environmental problems among future citizens.

CV203.CEO.2: Interpret basic knowledge about the environment and its allied problems.

CV203.CEO.3: Develop an attitude of responsibility for the environment and society.

CV203.CEO.4: Perceive the importance of sustainable development.

COURSE OUTCOMES:

The students after completion of the course will be able to,

- $\mbox{CV203.CO.1:}$ summarize the importance of ecosystem and biodiversity for maintaining ecological balance.
- CV203.CO.2: identify environmental problems arising due to engineering and technological activities and the science behind those problems.
- CV203.CO.3: categorize the major pollutants along with sources and abatement devices for the environmental management.

CV203.CO.4: perceive the social and professional responsibility towards the environment.

THEORY					
Module I	Overview of Environment	2HOURS			
Multidiscipli	hary nature of environmental studies, Types of spheres, Natural Resources:	Forest, Wa-			
ter, Mineral,	Energy, Land, Ecosystems, Biodiversity and its conservation, Natural cycles:	Hydrologic,			
Carbon, Nitr	ogen, Phosphorus and Sulphur cycle.				
Module II	Environmental Pollution	2 HOURS			
Environment	al Pollution: Air, Water, Soil, Solid and Hazardous Waste Management; Envir	ronment and			
human healt	n, Overutilization of natural resources, Environmental Legislation, Environmer	ntal monitor-			
ing organizat	ions in India, Environmental Protection Agency (EPA)				
Module II	Global Environmental Issues	2 HOURS			
Introduction	to:				
Climate chan	ge, Global warming, Acid rain, Ozone layer depletion, Plastic waste managemen	nt, Municipal			
solid waste n	nanagement, Food problem, E-waste management, Social Issues: Environment	al ethics and			
economics.					
Module IV	Sustainable Development	2 HOURS			
Concept of sustainable development, International Institute of Sustainable Development (IISD) : Intro-					
duction Sustainable goals, Environmental Audits, Rainwater harvesting Water management techniques					
Activity Based	Learning and Evaluation:				
----------------	--------------------------	----------			
Activity No. 1	Site Visit	02 HOURS			

Students have to visit any one nonhazardous polluted site for finding the various reasons of its pollution and suggest preventive measures for it. Prepare the detailed report on it along with the photos. This could be completed in a group.

Activity No. 2A	Students has to perform any one of the following activi-	02 HOURS
	ties: (2A or 2B)	

Students have to organize any one of the following activities in the institute and prepare a detailed report on their experience of organizing conducting the activity, its possible benefits to the environment along with the photos. This could be completed in group of students:

1. No Car and Bike Day

2. Shutting down the fans and air conditioning systems of the campus for an hour.

3. Environmental awareness programs like organizing essay competition, poster competition, slogan making competition or any other related to it.

4. Celebrating various environmental days.

5. Any other similar activity related to the environment.

Activity No. 2B Project Work 2 HOURS

Students have to identify the real life environmental problems from their daily observations and try to find out the various feasible solutions for it as their project work. They are supposed to prepare the prototype, demonstration model, poster, detailed report and present it to the evaluators. The project should be related to the below mentioned heads:

1. Reuse, Recycle and Reduce

2. Environmental Pollution Monitoring and Control

3.Material Balance Concept

4.Sustainable Development

5. Environmental Innovations The evaluation is based on at least one number of project presentation reviews apart from the final project presentation.

TEXT BOOK

- 1. R. J. Ranjit Daniels and Jagdish Krishnaswamy, "Environmental Studies", Wiley India Publications, ISBN: 9788126519439.
- 2. Rao C.S. "Environmental Pollution Control Engineering", Wiley Eastern Publications, ISBN: 9780470217634.
- 3. Cunningham W.P. and Cunningham M.A., "Principles of Environmental Science", Tata McGraw-Hill Publishing Company, New Delhi, 2002.
- 4. Miller T. G. Jr., "Environmental Science", Wadsworth Publishing Co., ISBN-10: 1111988935 ISBN: 9781111988937.

- 1. H. S. Peavy, D. R. Rowe and G. Tchobanoglous, "Environmental Engineering", McGraw Hill, ISBN: 84-282-0447-0.
- Helen Kavitha "Principles of Environmental Science", Sci tech Publications, 2nd Edition, 2008. ISBN: 9780444430243.
- 3. Henry J.G. and Heinke G.W., "Environmental Science and Engineering", 2nd Edition, Prentice Hall of India, New Delhi, 2004, ISBN: 978-0131206502.
- 4. Metcalf Eddy "Wastewater engineering: Treatment and reuse", McGraw Hill, ISBN: 007041878.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2020-2021 (Rev. 2019)
SECOND YEAR BACHELOR	COURSE NAME	Applied Mathematics
	COURSE CODE	AS203
	COURSE CREDITS	4
RELEASE DATE : 01/07/2020	REVISION NO	1.0

TEACHING SCHEME			EXA	AMINAT	TION SCHEMI	E AND MARKS	
(HOUR	S/WEEK)	THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE: NIL

COURSE OBJECTIVES:

AS203.CEO.1: To evaluate the Laplace and inverse transform of functions.

- AS203.CEO.2: To evaluate the Fourier series of periodic functions and Fourier transform of non-periodic functions.
- AS203.CEO.3: To evaluate the derivative of vector-valued functions.
- AS203.CEO.4: To evaluate the area and the surface integrals of the vector functions.
- AS203.CEO.5: To apply numerical methods for solving the problems of general calculus and differential equations.

AS203.CEO.6: To execute the program on problems of numerical methods using MATLAB.

COURSE OUTCOMES:

The students after completion of the course will be able to,

- AS203.CO.1: Evaluate the Laplace and Inverse Laplace transform and will solve the differential equations.
- AS203.CO.2: Rewrite the periodic and non-periodic functions as a series of sines and cosines.
- AS203.CO.3: Differentiate a vector valued function in plane or space.
- AS203.CO.4: Solve and compute the area and volume of the objects.

AS203.CO.5: Apply the numerical methods to problems of calculus and differential equations.

AS203.CO.6: Execute the program codes using MATLAB.

UNIT 1 Laplace Transform and its Applications to LDE

Introduction of Laplace Transform, Properties: First shifting, Change of scale, Linearity, Multiplication by t, Division by t. Laplace Transform of derivatives, Unit Step function, Impulse Function and Periodic Functions. Introduction of Inverse Laplace Transform, Properties: First shifting, Change of scale, Linearity, Multiplication by s, Division by s. Derivatives, Integration. Use of partial fractions to find Inverse Laplace Transform. Applications of Laplace Transfrom to find Solution of linear differential equations.

UNIT 2 Vector Differentiation

THEORY

Vectors in 2-D and 3-D, Scalar Product, Vector Product, Vector/scalar functions and fields, Derivative of vectors, Velocity and Acceleration, Gradient of a Scalar Field, Directional Derivative, Divergence of a Vector Field, Curl of a Vector Field.

UNIT 3 Vector Integration

Line Integration, Line Integrals Independent of Path, Double Integrals Green's Theorem in the Plane, Surfaces for Surface Integrals. Surface Integrals, Volume Integrals, Divergence Theorem, Stoke's Theorem.

UNIT 4 Fourier Series and Fourier Transform

Periodic functions, Fourier series, Dirichlet's conditions, determination of Fourier constants, Half ranges series, arbitrary period functions series. Introduction of Fourier Transform, Fourier Integral Theorem (without proof), Fourier transform and its properties, Fourier Sine Transform, Fourier Cosine Transform, and Inverse Fourier transforms.

UNIT 5 Numerical Methods I

Numerical Differentiation and Integration, Interpolation: Finite Differences, Newton's and Lagrange's Interpolation. Numerical solution of System of linear equations by Gauss elimination method, LU-Decomposition method.

UNIT 6 Numerical Methods II

Solution of Ordinary differential equations by Euler's, Modified Euler's, Runge-Kutta 4th order methods, Adams-Bashforth Predictor and Corrector Method, Solution of Partial Differential equations by Numerical method: Crank Nicholson method .

9 110 0 110

6 HOURS

6 HOURS

9 HOURS

9 HOURS

6 HOURS

6 HOURS

PRACTICAL: Any 10	practicals are performed as per the requirement of a b	oranch.			
PRACTICAL NO.01		2 HOURS			
Introduction to MATLAB	: Syntax, keywords, matrices, polynomials, loops.				
PRACTICAL NO.02		2 HOURS			
Introduction to MATLAB	: In-built functions, 2D/3D plots, creating simple programs.				
PRACTICAL NO.03		2 HOURS			
Finding Laplace transform	as of functions, solution of differential equations using Laplace t	ransforms.			
PRACTICAL NO.04		2 HOURS			
Finding Fourier transforms	s of functions, Plotting of transforms.				
PRACTICAL NO.05		2 HOURS			
Numerical Integration: Tra	apezoidal, Simpson's 1/3rd and Simpson's 3/8th rule.				
PRACTICAL NO.06		2 HOURS			
Interpolation techniques: 1	Lagrange's Interpolation.				
PRACTICAL NO.07		2 HOURS			
Interpolation techniques: 1	Newton's Interpolation.				
PRACTICAL NO.08		2 HOURS			
Solution of differential equ	nation by modified Euler's method.				
PRACTICAL NO.09		2 HOURS			
Solution of differential equ	ation by Runge-Kutta method.				
PRACTICAL NO.10		2 HOURS			
Curve Fitting: Linear, Quadratic.					
PRACTICAL NO.11		2 HOURS			
Solution of algebraic equat	tions: Newton- Raphson method.				
PRACTICAL NO.12		2 HOURS			
Solution of algebraic equations: Bisection method.					
PRACTICAL NO.13		2 HOURS			
Curve Fitting: Cubic, Exp	oonential.				

TEXT BOOK

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10 th edition, Wiley Eastern Ltd., 2015, ISBN: 13: 9788126554232.
- 2. Dr. B.V. Ramana, Higher Engineering Mathematics, 5 th edition, Tata McGraw Hill, 2017, ISBN: 978-0-07-063419-0.
- 3. Amos Gilat, "MATLAB: An Introduction with Applications", 4th edition, Wiley Publication, 2010, ISBN-13: 978-0-470-76785-6.

- 1. B.S. Grewal, Higher Engineering Mathematics, 44 th edition, Khanna Publications, 2018, ISBN: 978-81-933284-9-1.
- 2. Ram N. Patel and Ankush Mittal, "Programming in MATLAB- A Problem solving approach", Pearson Education, 2014, ISBN-978-93-325-2481-1.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)
SECOND YEAR BACHELOR	COURSE NAME	Mechanics of Fluids
	COURSE CODE	CV214
	COURSE CREDITS	4
RELEASE DATE : 01/07/2020	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE : Applied Mechanics, Science of Nature

COURSE OBJECTIVES:

CV214.CEO.1: To relate the knowledge of fluid behavior at rest and in motion for problem solving. CV214.CEO.2: To summarize the fundamentals of open channel flow.

CV214.CEO.3: To apply conservation equations to pipe flow and open channel flow problems.

CV214.CEO.4: To make use of the concepts related to dimensional analysis and model studies for design of hydraulic structures.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV214.CO.1: interpret the properties and behavior of the fluid at rest and in motion.

CV214.CO.2: apply the principles of hydrostatics and determine the forces.

CV214.CO.3: utilize equations of motion for various flow conditions and compute discharge of the flows.

CV214.CO.4: analyze laminar and turbulent flows through pipes.

CV214.CO.5: evaluate various parameters related to the flow around immersed bodies.

CV214.CO.6: analyze the different types of open channel flow using various governing equations.

THEORY	7			
UNIT 1	Fundamental Concepts and Fluid Statics	6 HOURS		
Fundamental Concepts: Continuum, Fundamental fluid properties, Viscosity and Newton's law of viscosity, Vapour pressure, Surface tension, Capillarity, Bulk Modulus and Compressibility. Fluid Statics: Introduction to fluid statics, Pressure and Pressure measuring devices, Pascal's law, Hydrostatic equa- tion. Hydrostatic forces on submerged surfaces. Buoyancy, Stability of floating and submerged objects				
UNIT 2	Fluid Flow and Equations of Motion	7 HOURS		
 Fluid Flow: Parameters of Fluid Flow, Types of Fluid Flow, Potential, Stream function, Rotationality, Vorticity and Circulation, Conservation of Mass and Equation of Continuity. Equations of Motion: Forces acting on fluid mass in motion, Euler's equation of motion along a streamline, Navier stokes equation, Bernoulli's Equation and conservation of Energy, Applications of Bernoulli Equation, Hydraulic Grade line and Total Energy line, Kinetic Energy Correction Factor, Linear Momentum Equation, Momentum Correction Factor 				
UNIT 3	Internal Flows	7 HOURS		
Reynold's Equation Laminar Flow: Characteristics of Laminar flow through circular pipes, Resistance to Flow in Smooth and Rough Pipes, Darcy's law, Energy losses in pipe flow, Flow through simple, compound, parallel, branched pipes and siphons. Turbulent Flow: Characteristics of Turbulent Flow through Pipes, Boussinesq's theory, Prandtl's mixing length theory, Velocity distribution in turbulent flow, Velocity distribution for smooth and rough boundaries, Average Velocity Concept.				
UNIT 4	External Flows and Dimensional Analysis	8 HOURS		
Flow Analy Practical pr Lift, Drag of and Aerofo of lifts, Lift Dimensiona Methods of ent types o	rsis: roblems involving fluid flow around submerged objects, Definitions and expressi coefficient, Lift coefficient, Types of drag, Stokes law, Drag on - Sphere, Cylinde il, Karman, s vortex street, Effects of free surface and compressibility on drag, I on cylinder and aerofoil, Magnus effect, Polar diagram. Al Analysis: Dimensional Analysis, Dimensionless Numbers. Self-Study: Boundary layer the f thicknesses, Boundary layer separation	ions for drag, er, Flat plate Development heory, Differ-		

UNIT 5	Open Channel Flow	6 HOURS

Introduction to Open Channel Flow:

Classification of Channels and Channel Flows, Froude Number, Continuity and Energy Equations for Open Channel flows. Specific Force, Specific Energy, Critical flow computations based on specific force and energy criteria.

Uniform flow in Open channels:

Characteristics and establishment of uniform flow, Chezy's and Manning's formula, Normal Depth, Conveyance, Section factor, Hydraulic Exponent, Uniform flow computations, Most efficient channel sections.

6 HOURS	UNIT 6	Gradually and Rapidly Varied Flows in Open Channels	6 HOURS
---------	--------	---	---------

Gradually Varied Flow (GVF):

Assumptions and Differential equations of GVF, Classification of Bed slopes, GVF profiles, GVF computations.

Rapidly Varied Flow (RVF):

Phenomenon of Hydraulic Jump and energy dissipation, Conjugate depths, Types of hydraulic jump, Applications of Hydraulic jump. Introduction to Computational Fluid Dynamics.

PRACTICALS:				
PRACTICAL NO.01	Designing the Pipe System	6 HOURS		
Design a pipe system for t practical, students has to system:	the assigned area by using the appropriate software. In order to a do following activities and refer its result as a input data to des	complete this sign the pipe		
1. Determine viscosity of	the fluid.			
2. Identify the type of flow	v by using Reynolds experiment.			
3. Calculate all the losses	in the flow field (except losses in the pump).			
PRACTICAL NO.02	Discharge Measurement	4 HOURS		
1. Pipe Flows: Using Venturimeter Orifice meter.				
2.Open Channel Flow: Us	ing Notches.			
PRACTICAL NO.03	Analyzing the Internal and External Flows	4 HOURS		
In order to complete this j	practical, students have to do following activities:			
1. Verify the Bernoullis T	heorem for Internal Flow.			
2. Plot the pressure distribution	bution around aerofoil shape by using a wind tunnel.			
PRACTICAL NO.04	Energy Dissipation in Hydraulic Jump	6 HOURS		
In order to complete this j	practical, students have to do following activities:			
1. Determine the value of Mannings coefficient for the given channel and calculate the velocity.				
2. Identify the type of hydraulic jump based on Froude number.				
3. Determine the percenta and analytically.	ge energy dissipation (relative loss) due to hydraulic jump both ex	perimentally		
PRACTICAL NO.05	Mini Project	4 HOURS		
Students have to identify concepts and prepare the report.	real-world situation/problem related to applications of basic flu working model or prototype for the selected project along with	id mechanics the detailed		

TEXT BOOK

- Modi, P.N. and S.M. Seth, "Hydraulics and Fluid Mechanics including Fluid Machines", Standard Book House, Delhi, Nineteenth edition, 2009, ISBN 13: 978-8189401269
- Frank M. White, "Fluid Mechanics in SI Units", McGraw Hill Publications, Eighth edition, 2017, ISBN 13: 978-9385965494.
- 3. Streeter and Wylie, "Fluid Mechanics", McGraw Hill Publications, ISBN 13: 978-0070622425
- 4. Subramanya K, "Flow in Open Channels", Tata McGraw-Hill Education, Fourth edition, 2015, ISBN 13: 978-9332901339.

- 1. Yunus Cengel and John Cimbala, "Fluid Mechanics Fundamentals and Applications", McGraw Hill, Publications, ISBN 13:978-0070700345.
- Fox, McDonald and Pritchard, "Fluid Mechanics", Wiley publication, 2015, ISBN: 978-8126541287.
- 3. R. C. Hibbeler, "Fluid Mechanics", Person Publication, 2018, ISBN: 978-9332547018
- 4. Ven te Chow, "Open Channel Hydraulics" Tata McGraw Hill, 2009, ISBN 13: 978-1932846188.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)
SECOND YEAR BACHELOR	COURSE NAME	Surveying and Geospatial Engineering
	COURSE CODE	CV215
	COURSE CREDITS	4
RELEASE DATE : 01/07/2020	REVISION NO	1.0

TEACHING SCHEME			EXA	AMINAT	FION SCHEME AND MARKS			
(HOUR	(HOURS/WEEK) THEORY TUTORIAL/ PRESENTATION/		TOTAL					
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION		
3	2	35	35	30	-	50	150	

PRE-REQUISITE:

COURSE OBJECTIVES:

CV215.CEO.1: To introduce the students, to the theory and application of Surveying in Civil Engineering projects.

CV215.CEO.2: To facilitate understanding of the fundamentals of surveying knowledge and familiarizing them with latest surveying practices. To train the students to work in the field with the knowledge acquired in the classroom through mini field projects.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV215.CO.1: apply the techniques of levelling to solve engineering problems.

- CV215.CO.2: interpret and implement the principles of trigonometry for surveying using standardized methods.
- CV215.CO.3: perform traversing and triangulation by implementing the basic principles of surveying.

CV215.CO.4: construct different types of curves for alignment of roads and railways and lay out civil engineering structure on field.

CV215.CO.5: Record and interpret spatial data and perform analysis by using modern surveying tools CV215.CO.6: analyze field data to minimize errors using mathematical models.

Application justments. Spirit Level errors in le Contours- o measureme Self Study:	as of surveying. Equipment used in surveying. Concept of temporary and per Errors in measurements- sources and types. Introduction to EDM: Study of T lling- different types of levels and staffs; booking and reduction of data, method velling. characteristics, uses, and methods of contouring, contour maps-toposheets, draw nts from cross section, earth work calculations, contouring using software. Principle of plane table surveying, advantages and disadvantages	ermanent ad- otal Station s of levelling, ving sections,			
UNIT 2	Measurement of Linear Distances and Directions	8 HOURS			
Prismatic C errors and Theodolites measureme and reiteras Total Stati Self-Study- (assisted W	Compass- concept of bearings and angles; magnetic bearings, dip-declination, loc adjustments; s- different types, methods of observation and booking of data, Optical metho nt with theodolite. direction measurement with theodolite, horizontal angles tion, vertical angles, measurement of Hz Distance and reduced levels of inaccessi on- Distance and Coordinate Measurement, Remote Elevation Measurement. Fundamental axes of theodolite: testing and permanent adjustments of a trans Vith demonstration and practical)	al attraction, ods for linear by repetition ble locations. sit theodolite			
UNIT 3	Traversing and Triangulation	8 HOURS			
Traversing: balancing of area of a cl Triangulati surements a Self Study:	Purpose and classification of traversing, traversing with a theodolite and T of traverses, Computation of coordinates, computation of areas from plans, coosed traverse, omitted measurements, on- network, strength of figures, selection of stations, intervisibility, satellite stand computations. deflection angles using transit theodolite and magnetic bearing.	otal Station. alculation of tations, mea-			
UNIT 4	Curves and Survey Projects	8 HOURS			
Curve Setting: Types of curves, elements of a curve, setting out a simple curve, types of vertical curves, setting out vertical curves. Engineering Project Surveys- requirements and specifications, various stages of survey work. Setting out of works- buildings Self-Study: Setting out of culverts					
UNIT 5	Fundamentals of RS, GIS and Photogrammetry	8 HOURS			
Remote Set magnetic sp GIS: introd dress geoco Introductio tic reference	nsing: Fundamentals of remote sensing- definition and overview of remote sen pectrum, concept of resolution, earth observation satellite and their characteris luction to GIS definition, evolution, components of GIS, Input data, GIS data ding, digital image processing on to Aerial Photogrammetry: vertical and oblique photography, scale, image par e co-ordinate system, introduction digital elevation model	sing, electro- stics. a models, ad- callax, geode-			
Format No.	: MITAOE/ACAD/ 002 Rev. No.: 2.0 Rev. Date	e: 01/07/2019			

THEORY UNIT 1 Introduction to Surveying and measurement of elevations 8 HOURS

Introduction: Principle of surveying, classification of surveys. Introduction to coordinate systems.

3. Setting out of simple circular curve 4. Calculate RLs of road profile by auto level- simple and differential levelling 5. Draw the contour map of the road either manually or using standard software. 6. Draw l/s to fix formation line and draw c/s at various chainage 7. Calculate the volume of earthwork in cutting and filling **PROJECT NO.02 10 HOURS** Setting out of foundation Prepare a project report on setting out a designed foundation plan on ground As inputs from prerequisite CV-205-BDC (plan of residential building) Objective: 1. Prepare of the plan of a whole area/populated area/closed traverse (survey number such as the campus of a college) with total station using Auto-CAD 2. Calculate the co-ordinates of respective plot 3. For proposed building, find the position of required plot size on ground and mark the area 4. Perform preliminary survey of an area with a total station 5. Draw the contour map of the region either manually or using standard software such as QGIS or ArcGIS. 6. Calculate the co-ordinates of respective foundation on the same area using AutoCAD 7. Mark out a designed foundation plan on ground with total station PRACTICAL NO.01 2 HOURS **Closed traversing** Comparison between the angular and linear adjustment necessary for a closed traverse performed with a prismatic compass and a total station or 1" micro-optic theodolite. PRACTICAL NO.02 4 HOURS **Reduced** level To determine the reduced level of inaccessible point using a 1" micro-optic theodolite (at least two cases)

Theory of errors, propagation of errors, variance and covariance; Least squares principle and adjustment

Data output- Post-requisite TRE and QSE Objective: 1. Fix the alignment of road with its magnetic bearings

Adjustment computation

of field survey data by parametric and condition equation methods

Prepare a project report on road setting out a road having simple circular curve.

ROAD PROJECT

2. Calculate deflection angle- with at least one change in direction

PRACTICALS: The following practical are to be performed

UNIT 6

PROJECT NO.01

Format No.: MITAOE/ACAD/ 002 Rev. No.: 2.0

Rev. Date: 01/07/2019

4 HOURS

8 HOURS

TEXT BOOK

- 1. Dr. B. C. Punmia, Ashok K. Jain, ArunK.Jain, "Surveying Vol. I and II", Laxmi Publication, ISBN : 81- 7008-054-1.
- 2. T.P.Kanetkar and S.V.Kulkarni , "Surveying and Levelling" Vol. I and Vol. II, PVG Publication , ISBN:10 8185825009, ISBN: 13 9788185825007.

- 1. Charles D Ghilani, Paul R Wolf., "Elementary Surveying: An introduction to Geomatics", Prentice Hall, 14th Edition, ISBN-13: 978-0132554343/ ISBN-10: 0132554348.
- 2. A.M.Chandra, "Plane Surveying", New Age International Publishers, ISBN 13: 9788122419023.
- 3. N. N. Basak, "Surveying and Levelling", Tata Mc-Graw Hill, ISBN 10: $007460399 \mathrm{X}$ / ISBN 13: 9780074603994.
- 4. Dr. K. R. Arora, "Surveying Vol. I and II", Standard Book House. ISBM-13: 9788189401238
- 5. Subramanian, "Surveying and Levelling", Oxford University Press, ISBN : 0195684249, 9780195684247.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)
SECOND YEAR BACHELOR	COURSE NAME	Structural Analysis
	COURSE CODE	CV216
	COURSE CREDITS	4
RELEASE DATE : 01/07/2020	REVISION NO	1.0

TEACHING SCHEME			EXA	EXAMINATION SCHEME AND MARKS				
(HOUR	S/WEEK)	THEORY TUTORIAL/ PRESENTATION/				TOTAL		
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION		
3	2	35	35	30	50	NIL	150	

 $\label{eq:pre-regulation} \textbf{PRE-REQUISITE:} Mechanics of Solids$

COURSE OBJECTIVES:

CV216.CEO.1: To understand the process of structural analysis.

CV216.CEO.2: To apply geometric and energy methods to determinate structures.

CV216.CEO.3: To apply force methods of analysis for indeterminate structures.

CV216.CEO.4: To apply displacement methods of analysis for indeterminate structures.

CV216.CEO.5: To draw influence line diagrams for determinate structures.

CV216.CEO.6: To introduce plastic analysis for steel structures.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV216.CO.1: determine internal forces in structure and sketch deflected shapes.

CV216.CO.2: determine displacements of determinate structures.

CV216.CO.3: analyse indeterminate structures by force methods.

CV216.CO.4: analyse indeterminate structures by displacements methods

CV216.CO.5: analyse determinate structures for moving loads.

CV216.CO.6: estimate the collapse load for indeterminate structures.

THEORY	ζ					
UNIT 1	Introduction to structural analysis	6 HOURS				
Types of st Degree of s shear force,	Types of structures and loads. The process of analysis and design of structures. Stability of structures. Degree of static and kinematic indeterminacy. Symmetry of loads and supports. Review of Axial force, hear force, bending moment diagrams. Static analysis of beams frames and trusses.					
UNIT 2	Geometrical and Energy methods	7 HOURS				
Displaceme conjugate i superpositi	Displacements of Statically Determinate Structures by Macaulay's Method, moment area method and conjugate method. Principles of virtual work, Strain energy, Castigliano's theorems. Principle of superposition, Betti's theorem, Maxwell's reciprocal theorem.					
UNIT 3	Force Methods	7 HOURS				
Basic Conc deformation Temperatu	Basic Concepts of the Force Method. Formulation of compatibility equations, Method of consistent leformations, Unit load method for analysis of indeterminate beams, frames and trusses. Analysis for remperature and lack of fit.					
UNIT 4	Displacement Methods	7 HOURS				
Basic Conc lation of eq minate bea	epts of the displacement method. Stiffness coefficients, Slope deflection equation quilibrium equations. Relative stiffness, Moment distribution method. Analyst ms, frames and trusses, effect of settlement of supports.	ions. Formu- is of indeter-				
UNIT 5	Influence Lines	7 HOURS				
Concept of jointed trus and bendin	Concept of moving loads. Influence lines for cantilever, simply supported, overhanging beams and pin ointed truss. Criteria for maximum shear force and bending moment. Absolute maximum shear force and bending moment under moving point loads.					
UNIT 6	Plastic Methods	6 HOURS				
Concept and assumptions in plastic analysis theory, shape factor, collapse load, load factor, plastic nodulus of section and plastic moment of resistance. Upper bound and lower bound theorems. Computation of collapse load for fixed beam, continuous beam and plane frames.						

A) TUTORIAL: Tutorials based on following topics							
TUTORIAL NO.01	Static analysis of determinate structures	2 HOURS					
Use of FBD and equilibr	Use of FBD and equilibrium equations for analysis of determinate beams, frames and truss.						
TUTORIAL NO.02	Geometrical and energy methods	2 HOURS					
Determination of slope a	and deflections for determinate beams by geometric and energy m	ethods.					
TUTORIAL NO.03	FORIAL NO.03 Force methods 2						
Analysis of indeterminat	e structures by force methods and plotting SFD and BMD.						
TUTORIAL NO.04	Displacement Methods	2 HOURS					
Analysis of indeterminate structures by displacements methods and plotting SFD and BMD.							
TUTORIAL NO.05 Influence Lines		2 HOURS					
Drawing ILD for determinate beams and trusses under moving point loads.							
TUTORIAL NO.06	Plastics Methods	4 HOURS					
Plastic analysis of indeterminate beams and frames by static and kinematic methods.							

B) V Labs: Experiments on following topics using Virtual Labs.						
EXPERIMENT NO.01	Single Span Beams Experiment	2 HOURS				
http://bsa-iiith.vlabs.ac.in/exp2/Objective.html?domain=Civil						
EXPERIMENT NO.02	Continuous Beams Experiment	2 HOURS				
http://bsa-iiith.vlabs.ac.in/exp3/Objective.html?domain=Civil						
EXPERIMENT NO.03	Portal Frames Experiment	2 HOURS				
http://bsa-iiith.vlabs.ac.in/e	xp5/Objective.html?domain=Civil					
EXPERIMENT NO.04	Trusses Experiment	2 HOURS				
http://bsa-iiith.vlabs.ac.in/exp8/Objective.html?domain=Civil						
EXPERIMENT NO.05	Plastic Hinge Experiment	2 HOURS				
http://bsa-iiith.vlabs.ac.in/exp10/Objective.html?domain=Civil						

- 1. C S Reddy, "Basic Structural Analysis", Tata McGraw Hill, 2011, ISBN-13: 978-007-0702-769
- 2. R.C.Hibbeler, "Structural Analysis", Pearson Education; 9th Edition, 2017, ISBN-10: 9332586144
- 3. Devdas Menon, "Structural Analysis", Narosa Publishing House, 2008, ISBN: 978-81-7319-750-5

- 1. Amin Ghali, Adam M Neville and Tom G Brown, "Structural Analysis: A Unified Classical and Matrix Approach", Sixth Edition, 2007, Chapman and Hall, ISBN: 978-04-1577-433-8
- 2. T.S. Thandavamoorthy, "Structural Analysis", Oxford Higher Education, 2011, ISBN-10: 0198069189

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF ELECTRICAL ENGINEERING	W.E.F	AY: 2020 - 2021 (R2019)	
SECOND YEAR BACHELOR	COURSE NAME	Digital Prototyping	
OF TECHNOLOGY	COURSE CODE	ET224	
	COURSE CREDITS	2	
RELEASE DATE : 01/07/2020	REVISION NO	1.0	

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOUR	(HOURS/WEEK) THEORY TUTORIAL/ PRESENTATION/				TOTAL		
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	4	NIL	NIL	25	NIL	50	75

PRE-REQUISITE : ME104 - Engineering Graphics, EX102 - Electrical and Electronics Engineering, CV102 - Applied Mechanics

COURSE OBJECTIVES:

ET224.CEO.1: To learn about materiality and techniques.

ET224.CEO.2: To justify the product development cycle through prototype project.

ET224.CEO.3: To inculcate implementation of skills by proper budget planning with effective troubleshooting and practices in aesthetics & ergonomics.

ET224.CEO.4: To develop abilities to transmit technical information clearly and test the same by delivery of presentation based on the prototype Project.

COURSE OUTCOMES:

The students after completion of the course will be able to,

ET224.CO.1: Consolidate the techniques, skills and modern engineering tools.

ET224.CO.2: Apply acquired skills to the construction of a prototype project.

ET224.CO.3: Develop a prototype project by performing tasks in team.

ET224.CO.4: Demonstrate the work carried out in a team.

PRACTICAL

Course Introduction:

This course is aiming at a Project Based Learning methodology. Through a series of projects, students will learn to design, build, and debug engineering prototype systems. They will cover multiple aspects of the prototyping process.

Students will complete four modules in rotational manner,

- 1. Hardware Prototyping (HP)
- 2. Software Prototyping(SP)

In the module hardware prototyping students will develop a prototype of electronic product. Student will be acquiring different skills in electronics like Soldering, Wiring and PCB Design using Electronic Design Automated tools, Assembly of electronic product, Testing and troubleshooting, requirement Analysis, Product concept development in electronic product design.

On the other hand in software prototyping students will learn Software development life cycle (SDLC) concepts, AEIOU framework, UML diagrams, Requirement analysis, data flow diagrams, creating high fidelity prototypes, Testing and Analysis etc.

Each module will have on an average six laboratory sessions. The students will complete them in rotational manner. Every module will award for 75 marks.

Marks of two modules at a time will be averaged in one semester and if student secures passing marks (passing grade) after averaging; then the required credits of the course will be earned.

For Digital Prototyping, Semester - III

Module	Programs
a) Hardware Prototyping (HP)	SV DTECH Electronics Engineering Electronics (r
b) Software Prototyping (SP)	Telecommunication Engineering, Computer Engineering, Infor-
	mation technology

For Digital Prototyping, Semester - IV

Module	Programs
a) Hardware Prototyping (HP)	SV BTECH Civil Engineering, Mechanical Engineering
b) Software Prototyping (SP)	Chemical Engineering

MODULE: 1/2 Hardware Prototyping (HP)							
PRACTICAL:							
PRACTICAL NO. 01	Introduction to design and construction of elec- tronic prototyping	02 HOURS					
1. Gain familiarity wit plementation. Form	1. Gain familiarity with basic product design stages; Conceptualization, Detailed Design and Implementation. Form a group of students. (04 max)						
2. Acquire concepts of (CDS) for product t	pasic processes in electronic prototyping. Develop Concept Des o be designed.	scription Sheet					
3. Perform Brainstorm theme in given time	ng and develop a simple electronic product idea based on give span. Hence draw Physical and Mechanical Drawing.	n pre-declared					
4. Perform Customer S	urvey and Competitor Analysis						
5. Develop Specification	ns and Make requirement analysis. Hence develop Bill of Mate	erial.					
6. Develop a plan for c	onstruction of electronic proto from a concept.						
PRACTICAL NO. 02	Basic electronic prototyping skills	02 HOURS					
1. Soldering							
• Demonstrate st	ructure of solder wire, soldering temperature, soldering station	n and gun.					
• Highlight Indus	trial safety norms, use of lead free solder, extractor fan etc.						
• Use of flux, des	oldering gun, desoldering techniques, removing components/w	vires.					
• Fix Solder defe	ets and inspect quality of solder joints.						
2. Wiring							
• Cleaning, strip	bing and tinning the wires.						
• Connections an	d protections for wires.						
PRACTICAL NO. 03	PCB design using basic Electronic Design Automa- tion (EDA)tools	06 HOURS					
1. Gain familiarity with	n PCB Design software.						
2. Draw schematics for PCB design.							
3. Make PCB layout as per circuit diagram. Learn PCB design standards.							
4. Export PCB files like gerber (.gbr), .pdf etc.							

PRACTICAL NO. 04	PCB fabrication	06 HOURS					
1. Develop negative imp	prints of top and bottom sides and expose to PCB.						
2. Perform etching proc	ess for PCB.						
3. Perform cleaning and	shearing for required size.						
4. Check continuity of t	racks.						
5. Use drilling machine	to make drills.						
PRACTICAL NO. 05	Assembly and testing of electronic proto	08 HOURS					
1. Make assembly of ele	ctronic prototype						
2. Insert components, p	erform lead cutting with standard clearance.						
3. Review mechanical fr	tment of PCB with component insertion.						
4. Solder components an	nd make wiring.						
5. Test prototype for ele	ectrical functionality, to perform rework if required.						
6. Assemble PCB with	mechanical fitments and assemblies.						
7. Analyze performance	and compare with specifications.						
8. Develop Customer fee	edback sheet and Take feedback from Customers.						
9. Make Customer feedb	back Analysis based on ratings.						
PRACTICAL NO. 06	Final project presentation	04 HOURS					
1. Demonstrate an elect	ronic prototype in a team.						
2. Write a report on implementation of prototype. (10-15 pages max)							
3. Present prototype implementation in a team by Power Point presentation.							
4. Enumerate proposed specifications of electronic prototype.							
5. Highlight financial as	pects including proposed cost and bill of material.						
6. Present Customer fee	6. Present Customer feedback analysis.						

- 1. Printed Circuit Boards: Design and Technology, Walter C. Bosshart, Tata McGraw-Hill Education, 1983, ISBN: 978-0074515495.
- Electronic Assembly Fabrication, Charles A. Harper, 1st ed., McGraw-Hill Education, 2002 ISBN: 978-0071378826.
- 3. Soldering in Electronics Assembly, Frank Riley, 1st ed., Springer, 2013, ISBN: 978-3-662-13163-3.
- Electronic Techniques: Shop Practices and Construction, R. S. Villanucci, A. W. Avtgis, W.F. Megow, 6th ed., Practice-Hall, 1999. ISBN: 978-0130195661.
- 5. Printed Circuit Boards: Design, Fabrication, and Assembly, R. S. Khandpur, 1st ed. McGraw-Hill Education, 2005, ISBN: 978-0071464208.
- 6. Practical Electronics for Inventors, Paul Scherz , Simon Monk ,3rd Edition, McGraw-Hill Education, 2013, ISBN 978-0071771337 (Available on TAB edition, Kindle)
- 7. IPC-J-STD-001E-2010, Requirements for Soldered Electrical and Electronic Assemblies, IPC. , ISBN: 9781580986922.
- 8. IPC-A-610 D-2014, Acceptability of Electronic Assemblies, IPC. ISBN: 9781611931549.

MODULE: 2/2	Softw	28 HOURS				
PRACTICAL						
PRACTICAL N	PRACTICAL NO. 01 Introduction to software engineering 04 HOURS					
Concepts, Software development life cycle (SDLC). Student need to use AEIOU Framework (Design Thinking) to decide the problem statement. Students will work in group of three on AEIOU framework						
PRACTICAL N	O. 02	Requirement analysis	04 HOURS			
Find the requirement	nt speci	fication of given problem statement and formulate the feasibl	e solution.			
PRACTICAL NO. 03 Design UML Diagrams for given problem state- ment						
Students have to we	ork in g	roup on Project Development canvas and then design following	ng,			
1. Creation of data flow diagram						
2. Creation of block diagram						
3. Design a activ	rity diag	gram				

PRACTICAL NO. 04	Design analysis	02 HOURS				
Create High Fidelity Prototype						
PRACTICAL NO. 05	ACTICAL NO. 05 Prototype Implementation 06 HOUR					
Use of prototype development tools such as Proto.io, Invision						
PRACTICAL NO. 06 Presentation 04 HOURS						
Each group will be given 10 min to present their work.						

- 1. Software Engineering A practitioners Approach, Roger S, Pressman, 7th Edition, ISBN: 9780073375977
- 2. Effective prototyping for software Makers, Jonathan Arnowitz, MIchaleArent by, ACM Digital Library, ISBN-13:978-0120885688
- Rapid prototyping: Principles and applications in manufacturing, Chua, C. K., Leong, K. F. (1997). New York: Wiley, ISBN: 978-9812778987.
- 4. Fab The coming revolution on your desktop from personal computer to personal fabrication, Gershenfeld, N. (2005). New York: Basic Books. ISBN:978-0465027453
- 5. Rapid prototyping: Principles and applications, Noorani, R. (2006). Hoboken, NJ: Wiley.ISBN: 978-0-471-73001-9.
- 6. Rapid manufacturing: The technologies and applications of rapid prototyping and rapid tooling, Pham D. T.,Dimov S. S. (2001). New York: Springer. JSBN: 978-1447111825
- Digital design and manufacturing: CAD/CAM applications in architecture and design, Schodek D., Bechthold M., Griggs K., Kao K. M., Steinberg M. (2005). Hoboken, NJ: Wiley , ISBN: 978-0471456360

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2020 - 2021(R2019)	
SECOND YEAR BACHELOR	COURSE NAME	Minor Project- Implementaion	
	COURSE CODE	CV240	
	COURSE CREDITS	1	
RELEASE DATE : 01/07/2020	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	2	NIL	NIL	NIL	NIL	50	50

COURSE OBJECTIVES:

CV240.CEO.1: To disseminate different methodical approaches to make solution.

CV240.CEO.2: To explain different conventional and modern engineering tools/techniques.

CV240.CEO.3: To engage them in creative thinking to improve the project performance using recent trends.

CV240.CEO.4: To educate about different types of prototyping.

CV240.CEO.5: To be more self efficient to solve problem in real time design environment.

CV240.CEO.6: To create awareness about Intellectual Property Rights(IPR).

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV240.CO.1: Select appropriate method for making of solution.

CV240.CO.2: Compare various engineering tools/technique to develop solution.

CV240.CO.3: Justify the selected method/tools opted for making of solution.

CV240.CO.4: Develop tangible solution to defined problem.

CV240.CO.5: Test the developed solution.

CV240.CO.6: Document solution in the form of Project report / IPR drafts.

COURSE ABSTRACT

Project is an avenue to cater Societal and Industrial needs. Minor project is one of the platform which students will use to solve real time problems. This course focuses on Selection of Methods/Engineering tools/Analytical techniques for making of solution.Further it emphasizes on importance of testing of solution by various stake holders.Through this course student learns to comprehensively understand engineering fundamentals and concepts, gets practical experience, chance to showcase skills, learns about team work, communication skills and responsibilities. It also imparts knowledge of Intellectual Property Rights.

Guidelines

- 1. Group members should deliberate upon different methodical approaches and finalize the appropriate method.
- 2. Students group should explore different Engineering tools/techniques for making of solution.
- 3. Justify the selected method/Engineering tools/analytical techniques identified based on the feasibility, affordability and ease of use.
- 4. While making the solution ,its imperative to take inputs/suggestions from various stake holders.
- 5. Solution must be critically analyzed from aspects.
- 6. Completed solution must be tested by target user/stake holders.
- 7. Students must protect their innovation, proof of concept through IPR .
- 8. While working in team, individual student should contribute and communicate effectively to maintain team balance.

TIMELINE

- 1. IPR Activity on Earlier allocated Group : 2 Weeks $(1^{st}, 2^{nd} \text{ week})$
- 2. Presentation of Project Review -1- Finalizing title with feasibility study and approval: 2 Weeks $(4^{th}, 5^{th} \text{ week})$
- 3. Presentation of Project Review -2 Analysis and Design of Project: 2 weeks (9th, 10th week)
- 4. Preparation of Project Progress Report I (week 11^{th} and 12^{th}) Project Phase-II
- 5. Project Review III (10 marks) (11^{th} week)
- 6. Evaluation by external examiner (End Semester by 12^{th} , 13^{th} week)

Demonstration and Presentation (50 Marks)

- 1. Review 1 (Project Implementation) (10 marks)
- 2. Review 2 (Project Demostration) (10 marks)
- 3. Project Activities (10 Marks)
 - Quiz on IPR (5 marks)
 - Patent Drafting (5 marks)
- 4. Review 3 (Project Documentation) (10 marks)
- 5. Final Demonstration and Presentation (10 marks)

WEEK NO	TASK TO BE DONE BY MENTOR	ACTIVITY TO BE PERFORMED BY STUDENTS GROUP	EXPECTED OUTCOME
Week 1	Introduction to IPR (Patent & Right) (30 min) Videos on Patent: (30 min)	StudentwillattemptQuiz-IIPRafterthelecture(10Questions)GradedActivity5marksTemplateI	Student will learn the patents and how to search patent
Week 2	How to check patent through CDAC online portal.	Student will do prior art search for their project, and try to generate patent Abstract as per the (Template- II)	Submission of Patent Abstract as per the prescribed Template.
Week-3	Design, Architectural overview /fea- sibility analysis of the project, Re- cent trends available to improve the performance.	Discussion on system architecture/ design method/ feasibility of project idea.	Student will imple- ment the best feasi- ble method to gener- ate prototype
Week-4	NIL	Review I (10 Marks) - Presentation	Student will present progress done in project prototype building.
Week-5	Searching of Patents, Drafting of Patents, Filing of Patents, types of patent Application, Patent Doc- uments. Expert lecture on above topic.	Final Drafting of com- plete patent document (5 marks) Graded Activity	Student will under- stand the basics of drafting patents, important of filling patent Submission in LMS
Week-6	 Presentation, discussion and doubt clearing based on Working on Algorithms / Design Working on Analysis Developing Prototype / Programming/ Circuits etc 	As per department / school	Student will learn to prevent design flaws.

WEEK NO	TASK TO BE DONE BY MENTOR	ACTIVITY TO BE PERFORMED BY STUDENTS GROUP	EXPECTED OUTCOME
Week-7	 Presentation, discussion and doubt clearing based on Working on Algorithms/Design Working on Analysis Testing of Prototype/ Code/ Circuits of project 	As per department / school	Student will analyze for project outcome
Week-8	NIL	Review-II (10 Marks) - Presentation	Student will work for performance im- provement if project not working satis- factorily.
Week-9	Regarding Final PPT For Project Faculty himself gives a presentation based on how to make effective pre- sentation on research topics.	Student will submit the Draft PPT through LMS at the end of Week-10	Student will learn to generate PPT covering all final outcomes of the project.
Week-10	Regarding Final report Generation For Project Faculty himself gives a presentation based on how to make effective project report should ex- plain all guidelines to be followed while preparing report	Student will submit the Draft Project report through LMS at the end of Week-10	Student report are expected to have de- sign Analysis, and the project should be expected to one year with the same guide
Week-11	NIL	Review-III (10 Marks)- Presentation	Students are ex- pected to prepare a detailed project report and Project PPT , they should also check for plagiarism.
Week-12	Final Project presentation and project report submission to the project coordinator. Faculty will re- view the student projects with ex- ternal examiner	Presentation and demon- stration of project.	Prototypes/Software and Final Project report

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2020-2021 (Rev. 2019)		
SECOND YEAR BACHELOR	COURSE NAME	Professional Skills		
OF TECHNOLOGI	COURSE CODE	HP 202		
	COURSE CREDITS	2		
RELEASE DATE : 01/07/2020	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	4	NIL	NIL	NIL	50	25	75

$\mathbf{PRE}\text{-}\mathbf{REQUISITE}: \mathrm{NIL}$

COURSE OBJECTIVES:

HP202.CEO.1: To increase students' confidence during everyday communication.

HP202.CEO.2: To increase impact of students' communication during presentations and public speaking.

HP202.CEO.3: To develop Leadership qualities among students.

COURSE OUTCOMES:

The students after completion of the course will be able to,

HP202.CO.1: Express themselves effectively in routine and real-world interactions through verbal and written communication.

HP202.CO.2: Show Confident Public Speaking skills.

HP202.CO.3: To showcase leadership qualities during tough tasks, make decisions and actions effectively within time.

TUTORIALS: (SECTION A)								
TUTORIAL NO.01	Role Plays and Picture Description	4 HOURS						
It helps students to sha content.	It helps students to sharpen their extempore skills with effective articulation and logical sequencing of content.							
TUTORIAL NO.02	Creative Writing Skills and Presentation Skills	8 HOURS						
It aims at evolving effe	ctive writing skills and presentation skills.							
TUTORIAL NO.03	Voice Modulation and Audio - Video Listening and De- bate	8 HOURS						
To enhance listening skills and to teach the students the basic components of voice modulations and helping them practice it. It helps overcome stage fear and learn audience engagement								
TUTORIAL NO.04	Leadership	6 HOURS						
Leadership qualities he execute it, utilizing res	elps person to lead a team in achieving the set vision. It helps in ources and motivating people involved in it.	planning to						
TUTORIAL NO.05	Decision Making	4 HOURS						
It helps to make necess	sary courageous and difficult decisions and carry them into action.							
TUTORIAL NO.06	Time Management	6 HOURS						
It helps organizing and planning how to divide valuable time between specific activities and prioritizing activities.								
SECTION B: Ve Bt	rbal, Reasoning and Aptitude Training through echGuru	12 HOURS						
TEXT BOOK								

- J.K.Gangal, A Practical Course in Effective English Speaking Skills, Prentice Hall India Learning Private Limited (2012), ISBN-10: 8120345843.
- 2. Jean Yates, Practice Makes Perfect: English Conversation, Premium Second Edition, McGraw-Hill Education; 2 edition, ISBN-10: 1259643271.
- 3. Brian Stacy, Speak to Win. How to Present with Power in Any Situation, AMACOM; Special ed. edition (16 February 2008). ISBN-10: 0814401570.
- 4. Simon Wootton and Terry Horney, Strategic Thinking A Nine Step Approach to Strategy and Leadership for Managers and Marketer, ISBN13: 9780749460778.
- 5. Lorin Woolfe, The Bible on Leadership: From Moses to Matthew Management Lessons for Contemporary Leaders, ISBN-10 : 0814439438; ISBN-13 : 978-0814439432.

- 1. J.K.Gangal, A Practical Course in Effective English Speaking Skills, Prentice Hall India Learning Private Limited (2012), ISBN-10: 8120345843.
- 2. Jean Yates, Practice Makes Perfect: English Conversation, Premium Second Edition, McGraw-Hill Education; 2 edition, ISBN-10: 1259643271.
- 3. Brian Stacy, Speak to Win. How to Present with Power in Any Situation, AMACOM; Special ed. edition (16 February 2008). ISBN-10: 0814401570.
- 4. Garr Reynolds, Presentation Zen: Simple Ideas on Presentation Design and Delivery (Voices That Matter), New Riders; 2 edition (8 December 2011), ISBN-10: 0321811984.

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2020-2021 (Rev. 2019)		
SECOND YEAR BACHELOR	COURSE NAME	Liberal Learning		
OF TECHNOLOGY	COURSE CODE	HP203		
	COURSE CREDITS	AUDIT		
RELEASE DATE : 01/07/2020	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK)		THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
1	NIL	NIL	NIL	NIL	NIL	DEMONSTRATION	NIL

$\mathbf{PRE}\text{-}\mathbf{REQUISITE}: \mathrm{NIL}$

COURSE OBJECTIVES:

HP203.CEO.1: To create awareness about joy of learning among students

HP203.CEO.2: To teach the skills necessary to be a lifelong learner

HP203.CEO.3: To provide students with broad knowledge of the wider worlds.

HP203.CEO.4: To develop a sense of social responsibility as well as strong and transferable intellectual and practical skills.

HP203.CEO.5: To inculcate intellectual, civic, and practical capacities in students.

COURSE OUTCOMES:

The students after completion of the course will be able to,

HP203.CO.1: Develop a skill in the domain of their interest.

HP203.CO.2: Demonstrate the skills learnt in the course.

HP203.CO.3: Apply the concepts learnt in real-life situations.

NOTE : Students may select any one of the following tracks			
COURSE CONTENTS			
Track 1	Introduction to photography	12 HOURS	
Types of camera, Basic camera controls. Light & Lenses, Understanding the Exposure Triangle. Aperture, Shutter Speed, and ISO. Auto and manual focus, Depth of field Landscape & nature photography, Creative aspects.			
Track 2	Dance	12 HOURS	
Study and demonstration of various dance forms such as classical, Bollywood, street dance, ballroom dance and Contemporary.			
Track 3	Creative Writing	12 HOURS	
Introduction to Creative Writing-How, literary aspects, different genres, forms of writing and script writing, Short Story Writing. Blog Writing.			
Track 4	Guitar	12 HOURS	
Parts of guitar, Names of strings, Proper right hand techniques, Proper left hand techniques, Tuning Guitar, Tuning by Ear, Tuning to a keyboard Introduction to guitar fret board & The Chromatic Scale- The Chromatic Scale, Fret board, How to read Guitar Tablature, Finger exercises, how to read Chord Blocks.			
Track 5	Art and Craft	12 HOURS	
Sketching & Drawing, Elements of Art, types of art forms, types of Painting, Craft, Wrap in scrap, Best out of waste, Paper craft, Cloth craft & Rangoli.			
Track 6	Robotics	12 HOURS	
Introduction to Robotics, Robotics Links and joints, Selection & types of sensors, Actuators.			
Track 7	Drama	12 HOURS	
Learning & practicing narrations, craft and art conceptualization as an effective presentation, Survey for identification of social and global issues as a concept in script writing, Sound and illumination measures. Understanding the audition for various sections like drama & film.			

Illustrating the dialog delivery, expressions, volume, pitch in the dialog, Expression through photography and editing skill with an expertise in handling cameras, microphone, effective management skill enabling the justification through foundation till representation.

Track 8 Yoga and Meditation

Concept of mind, Consciousness. Concentration techniques, Breathing exercises, Visualizations, Walking meditations. Simple yoga, Meditation and prayer, Asana and its types, Pranayama, its types and principles.

Track 9 Automotive Skills

Introduction to Automotive system, Brake system, Power train of automotive, Suspension system, Computer Aided Engineering, Manufacturing and safety, Assembly and finishing.

Track 10 Empathy & Compassion

Importance of Empathy, Role of empathy and compassion for engineers, Empathy activities, Skepticism About the Self, Free Will and the Situation, Recognizing emotions reading body language, improving listening skills, mindful self compassion, Compassionate Leadership, Origins of Morality, joy of giving, social responsibility, exercising social services.

Track 11 Singing

Vocal cords, Voice types, Female: Soprano or alto, Male: Tenor, baritone or bass, Breathing Techniques, Role of breathing in singing, types of scales and pitches, Musical notes foundation of any song, warm-up exercises: Humming exercise, tongue twisters, vowels, Tempo of song, Tempo Markings, Practicing all octaves, analysis of songs, practicing songs.

Track 12 Chess

Introduction to game of Chess. Rules, movement of pieces, strengths and weaknesses of all pieces. Stalemate, touch move, etiquette, pawn promotion and zugzwang, square of the pawn. Fundamental checkmate patterns, basic rules, special moves and rules such as castling, promotion, EnPassant, good moves for the opening.

Track 13 **RC** Plane

Introduction to RC planes, study with categorization of planes and study of control forces on RC plane. Study of control surfaces. Study of airfoil, Studying the concepts of take-off, cruising, landing and motions during flight. Study of graphs. Study on factors affecting the flight of plane. Control and propulsion system of RC aircraft. Introduction and making of Electrical glider.

12 HOURS

12 HOURS

12 HOURS

12 HOURS

12 HOURS

12 HOURS

Track 14	Drone Making	12 HOURS
----------	--------------	----------

Three thumb rules, Basic of FAA, Combination of electronics, Frame design, Motor stator reading and dimension, Basic of electronics, Introduction to Drones, Fundamental of Flight, Airframes and Electric Motors, ESC and flight controller, Receivers And Transmitter, Battery and chargers, Basic building Tutorial with working on software(Betaflight), FPV and LOS Simulations, Working on development of Betaflight.

NOTE : More tracks will be added as per demand of the students

MIT ACADEMY OF ENGINEERING, ALANDI

An Autonomous Institute Affiliated to

Savitribai Phule Pune University

Curriculum For Third Year Bachelor of Technology in Civil Engineering

2019-2023

MIT Academy of Engineering Autonomous Institute Affiliated to SPPU	COURSE STRUCTURE (REVISION 2019)			
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	:	2021-2022	
THIRD YEAR BACHLEOR OF TECHNOLOGY IN	RELEASE DATE	:	01/06/2020	
CIVIL ENGINEERING	REVISION NO.	:	1.0	

	SEMESTER: V											
	SUMMER INTERNSHIP (Audit: CV300)											
COURSE TEACHING SCHEME EXAMINATION SCHEME AND MARKS									C			
			Но	ur/We	ek	٦	THEORY	(PR	АСТ	T O	E
TYPE	CODE	DE NAME		Р	т	MSE	ESE	IA	T/P	DM	T A L	I T
DC07	CV305	Concrete Technology	3	2	-	35	35	30	50	0	150	4
DC08	CV306	Drinking Water & Sanitary Engineering	3	2	-	35	35	30	50	0	150	4
DC09	CV307	Design of Steel Structure	3	0	-	35	35	30	0	0	100	3
OE01	CV32#	Open Elective-01 (CPM / EE)	3	2	-	35	35	30	50	0	150	4
HSS5	CS361	Project Management	2	0	-	0	50	25	0	0	75	2
SDP6	CV342	Skill Development Course – 2 (ETABS)	0	4	-	0	0	25	50	0	75	2
SDP7	CV350	Project Design	0	4	-	0	0	25	0	50	75	2
	15	12	0	140	190	195	200	50	775	21		

SEMESTER: VI												
		COURSE	TE S	TEACHING SCHEME EXAMINATION SCHEME AND MARKS					RKS	С		
TYPE	CODE	NAME	Hour/Week		1	THEORY		PR/	АСТ	T O T A L	R E D I T	
			L	L P T		MSE	ESE	IA	T/P	DM		
DC10	CV312	Design of Reinforced Concrete Structure	3	2	-	35	35	30	50	0	150	4
DC11	CV313	Transportation Engineering	3	2	-	35	35	30	50	0	150	4
DC12	CV314	Water Resources Engineering	3	0	-	35	35	30	0	0	100	3
OE02	CV33#	Open Elective-02 (CPM / EE)	3	2	-	35	35	30	50	0	150	4
SDP8	CV34#	Skill Development Course – 3 (OpenRoad Designer / WATERGEMS)	0	4	-	0	0	25	50	0	75	2
SDP9	CV360	Project Implementation	0	4	-	0	0	25	0	50	75	2
HSS6	HP305	Employability and Career Development	0	4	-	0	0	25	0	50	75	2
TOTAL			12	18	0	140	140	195	200	100	775	21

Γ

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	2020-2021 (Rev. 2019)		
THIRD YEAR BACHELOR	COURSE NAME	Student Internship Program (Soft Skill/Technical Skills)		
	COURSE CODE	CV300		
	COURSE CREDITS	Audit		
RELEASE DATE : 01/07/2021	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	,	THEORY		TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

PRE-REQUISITE: NIL

COURSE OBJECTIVES:

CV300.CEO.1: To develop good bahavioural practices

CV300.CEO.2: To gain learning and living experience

CV300.CEO.3: To get acquainted with online learning platforms

CV300.CEO.4: To recognize the latest trend and understand the requirements for professional life

CV300.CEO.5: To formulate the problem statement

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV300.CO.1: Manage emotions, health, finances, relationships, performance extracurricular activities

CV300.CO.2: Increase knowledge of emotional competency and emotional intelligence

CV300.CO.3: Develop interpersonal skills and adopt good leadership behavior

CV300.CO.4: Reduce negative stress while promoting eustress, or positive stress

CV300.CO.5: Inculcate a sense of sportsmanship, better physical health and competitive spirit

INTRODUCTION:

The main aim of this internship is to assist all Third Year B.Tech. students to acquire the skills required for personal stability and professional growth. The ultimate goal is to imbue students with professionalism and technical skills. Using this internship, MITAoE students will enhance their professional skills, making themselves more marketable in today's competitive world. The students can develop various extracuurricular skills for working on emotional intelligence and sportsman spirit.

SCOPE AND STRUCTURE OF SIP:

This internship is offered to entrants of Third Year B.Tech. (after semester IV) that meet the eligibility criteria stated below:

Third Year B.Tech. entrants should apply for 3 to 4 weeks duration training or certification courses during June-July of every academic year. This is an audit course.

The scope of this internship is limited to identifying soft skill/ technical skill development opportunities and assisting MITAoE students to apply for such courses.

STUDENT ELIGIBILITY CRITERIA:

Students applying for internship must meet the following criteria:

After completion of fourth academic semester, Second Year B.Tech. students (Third Year B.Tech. entrants) of all schools are eligible to apply for 3 to 4 weeks duration internships under student internship program.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)
THIRD YEAR BACHELOR	COURSE NAME	Concrete Technology
	COURSE CODE	CV305
	COURSE CREDITS	4
RELEASE DATE : 01-07-2021	REVISION NO	1.0

TEACHING SCHEME EXAMINATION SCHEME AND MARKS							
(HOUR	S/WEEK)	THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE: 1. Building Design & Construction

COURSE OBJECTIVES:

CV305.CEO.1: To understand fundamental knowledge of concrete, its properties and its behaviour under various conditions.

- CV305.CEO.2: To design mix of regular and special types of concrete.
- CV305.CEO.3: To understand special techniques of concreting and machineries used for concreting work.

COURSE OUTCOME:

The students after completion of the course will be able to,

- CV305.CO.1: Describe different type's concrete ingredients with their properties. (L1)
- CV305.CO.2: Illustrate properties of concrete using various IS tests. (L3)

CV305.CO.3: Produce a concrete with specific mix. (L4)

- CV305.CO.4: Explain special types of concrete techniques.(L2)
- CV305.CO.5: Describe different concrete related equipment. (L2)

CV305.CO.6: Analyze Methods of Concrete Repair. (L3)

UNIT 1	Introduction and General Ingredient Of Concrete	6 HOURS			
History and applications tion of cem chanical an ing of Agg on water. functions, o https://ww	d Introduction of concrete. Cement: Different types of cement, Important press, Manufacturing of Portland cement, Chemical composition of Portland cement, Setting of cement. Aggregate: Classification- Fine aggregate, coarse aggregates, Artificial and Recycled aggregate. Water: Mixing Water, Curing Fly Ash: Classification of fly ash, properties of fly ash, tests on fly ash. classification, types. (Self-study component : cements and cement replacement w.sciencedirect.com/science/article/pii/B9780081002759000188)	operties and nent, Hydra- gregate, Me- ction, Grad- water, Tests Admixtures: ent materials			
UNIT 2	Properties Of Fresh And Hardened Concrete	6 HOURS			
Fresh Conc segregation of concrete of concrete properties, elasticity an https://sci-	rete: Workability: Factors affecting workability, measurement of workability, of , bleeding, Mixing, Transporting, Placing, and Compaction of concrete, Cur- , Influence of temperature, Maturity rule, Steam curing. Hardened concre , factors affecting strength, micro-cracking and stress-strain relationship, ot relation between tensile and compression strength, impact strength, abrasio and creep, shrinkage and swelling. (Self-study component : Conventional precas hub.se/https://www.sciencedirect.com/science/article/pii/B9780081027219000	cohesion and ing Methods te: strength her strength n resistance, st assembly : 0017)			
UNIT 3	Concrete Mix Design	6 HOURS			
Concrete m methods of design from	ix design: Concepts of Mix Design, Laboratory trial mixes and guidelines to i Mix Design, IS method of Mix Design as per IS 10262:2019. (Self-study comp a DOE method: https://web.iitd.ac.in/ bishwa /LEC _P DF ₇ 74/LEC1.pdf)	mprove mix, ponent : Mix			
UNIT 4	Special Concrete and Concreting Techniques	6 HOURS			
Roller comperformanc Cold weath detailed rep	pacted concrete, Light weight concrete, Polymer concrete, Fibre reinforced co e concrete, Pumped concrete, self-compacting concrete, Ferrocrete. Under wate er concreting, hot weather concreting (Site Visit : Visit to any R.M.C. plant a port)	ncrete, High r concreting, nd prepare a			
UNIT 5	Introduction to Concrete Related Equipment	6 HOURS			
Introduction, Significance and Types of: Batching plants, Hauling, Pumps, Concrete mixers, Con- crete vibrators. (Self-study component : New equipment used in industry: Boom placer, Lifting cranes)					
UNIT 6	Reclamation: Concrete Repair	6 HOURS			
Standard M 1. Strengtl Jacketing.	Iethods of Concrete Repair : Thin Repairs, Thick Repairs , Crack and Water L hening of concrete by Reinforced Concrete Jacketing, Steel Jacketing, FRP (Self-study component : Case study of Repair and rehabilitation of hardened of	eak Repairs, Confining or concrete)			

THEORY

PRACTICALS/PROJECT: Project should be perform in a group of maximum students								
PROJECT NO.1	Design of Concrete Mix	16 HOURS						
 Perform following tests on materials and use findings to prepare a concrete mix of M20/M25/M30/M35/M40 grade. Tests on Cement: Fineness, Standard Consistency and Setting time Tests on fine aggregate: Particle size distribution, Moisture content, Silt content, Specific gravity Tests on aggregate:, Gradation, Density test, Specific gravity. 								
PROJECT NO.02	Perform Tests on Fresh and Hardened Concrete	4 HOURS						
 Tests on fresh concre Tests on hardened co Flexural strength test 	 Tests on fresh concrete: Slump Cone, Compaction factor, Vee Bee Tests on hardened concrete: Compressive strength, Flexural strength test and Split tensile strength 							
PROJECT NO.03	Evaluate strength of old concrete by NDT tests.	4 HOURS						
Evaluate strength of ol • Rebound Hammer T • Ultrasonic Pulse Velo	d concrete by using following NDT tests est ocity Meter							

TEXT BOOK

- 1. Shetty M. S., "Concrete Technology", S. Chand Publications, eleventh edition, 2015, ISBN-13: 978-8121900034
- Gambhir M.L., "Concrete technology", Tata McGraw hill Publication, sixth edition, 2009, ISBN: 978-1259062551
- 3. S. S. Bhavikatti, "Concrete technology", I.K. International Publishing House Pvt. Limited, 2015, ISBN: 9384588679
- 4. Dr. S. Kandasamy, Advanced Concrete Technology, 2020, Notion Press, ISBN: 9781648690785

REFERENCE BOOK

- Neville A. M., Brooks J.J., "Concrete Technology", Pearson Publications, fifth edition, 2012, ISBN:978-0273732198
- 2. Zongjin Li, Advanced Concrete Technology, John Wiley Sons, 2011, ISBN: 0470902434
- John Newman, B S Choo, Advanced Concrete Technology 1: Constituent Materials, Elsevier, 2003, ISBN: 0080489982, 9780080489988
- 4. Santhakumar A.R., "Concrete technology", Oxford University Press, Fourth edition, 2010, ISBN: 978 0195671537

FURTHER LEARNING

- 1. NPTEL Videos Web notes of course Concrete Technology
- 2. IS Codes

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)
THIRD YEAR BACHELOR	COURSE NAME	Drinking Water and Sanitary Engineering
	COURSE CODE	CV306
	COURSE CREDITS	4
RELEASE DATE : 01-07-2021	REVISION NO	1.0

TEACHIN	HING SCHEME EXAMINATION SCHEME AND MARKS						
(HOUR	S/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE:

COURSE OBJECTIVES:

CV306.CEO.1: To study the various sources and properties of water and wastewater.

- CV306.CEO.2: To acquire the knowledge of components design associated with water supply and sanitation systems.
- CV306.CEO.3: To attain knowledge of various aspects related to supply of pure and safe drinking water to communities.

CV306.CEO.4: To comprehend methods of waste water collection, characterization, treatment, safe disposal practices and reuse of wastewater.

COURSE OUTCOME:

The students after completion of the course will be able to:

CV306.CO.1: Analyze the characteristics of water and wastewater.

CV306.CO.2: Estimate the quantity of drinking water and domestic wastewater generated

CV306.CO.3: Design the various units of water treatment plant.

CV306.CO.4: Summarize the advancement in water distribution system.

CV306.CO.5: Design the various units of sewerage treatment plant.

THEORY	ζ	
UNIT 1	Water Demand , Quality and Quantity	6 HOURS
Source of V Quantity E Water Inta Reference:	Water, Water quality and Characteristics of water (ISO 10500: 2012) 2ND Revision and Water Demand (ISO 10500: 2012) 2ND Revision and (MWRRA ke Works. Self-Study: Pipe Appurtenances. Manual on Water supply and Treatment by CPHEEO.	vision, Water A Guideline),
UNIT 2	Water Treatment Units	7 HOURS
Layout of solids, Desi fection (U- Water supp	Water Treatment Plant, Treatment for the removal of suspended, colloidal a gn of Coagulation- Flocculation-Settling Plain Sedimentation, Filtration Meth V method, ozone disinfection). Self-Study: Miscellaneous Treatments Reference oly and Treatment by CPHEEO Site visit to Water Treatment Plant is recomm	and dissolved ods of Disin- e: Manual on nended.
UNIT 3	Water Distribution Systems	6 HOURS
tribution sy Design of E sis, Appurt system Ref	ystem, Systems of Supply of Water, Design of Distribution System, Distribution SR, Analysis of pipe networks of distribution system, Hardy cross method for net enances in distribution system (fire hydrant). Self-Study: Maintenance of water ference: Manual on Water supply and Treatment by CPHEEO	n Reservoirs, etwork analy- r distribution
UNIT 4	Advancement in Water Distribution	6 HOURS
Water loss and GEMS water audi Distributio	detection control in water Supply Systems, Software's for Water Supply Syste , Smart metering and Sensing devices, IoT and Automation in Water Supply, F t. Site visit to Water Treatment Plant: Application of SCADA System in F n System.	ms EPANET Pricing water, PCMC Water
UNIT 5	Characterization and Collection of Sewage	7 HOURS
Quantificat Storm Sewe Self-Study: Reference:	ion of sewage; Characterization of sewage; Types of sewerage systems; Design of severage systems; Design of severage appurtenances Manual of Sewerage Sewage Treatment by CPHEEO	of Sewers and
UNIT 6	Design of Sewage Treatment Units	8 HOURS
Layout plat sewage, See methods su plant sludg	n and section of municipal wastewater treatment plant, Preliminary primary condary treatment of sewage: Activated Sludge Process, Sewage Filtration, M ich as Oxidation Ponds, Aerated Lagoons, rotating biological reactors, Sewa ge handling facilities, Recycle Reuse treated waste water. Introduction to: M	treatment of Miscellaneous ge treatment IBBR, MBR,

SBR, Up-flow Anaerobic Sludge Blanket (UASB) Reactor– Principle, advantages limitations, application Reference: Manual of Sewerage Sewage Treatment by CPHEEO Site visit to Sewage Treatment

Plant is recommended.

PRACTICALS/PROJECT:

PROJECT NO.1

Prepare a water testing report for domestic water as per guidelines of CPHEEO manual

PROJECT NO.02

Prepare a water testing report for sewage as per the guidelines of CPHEEO manual

PROJECT NO. 3

2 HOURS

10 HOURS

10 HOURS

Designing the Water Distribution Network by using Appropriate Software

TEXT BOOK

- 1. Water Supply Engineering: S. K. Garg, Khanna Publishers, ISBN-13: 978-8174091208
- 2. Water Supply and Sanitary Engineering: G. S. Birdie and J. S. Birdie, Dhanpat Rai Publishing Company, ISBN-13, 9788187433798
- Environmental Engineering 1: Water Supply Engineering: B. C. Punmia, Ashok Jain and Arun Jain. Laxmi Publications (P) Ltd. ISBN 13: 9788174091208
- 4. Environmental studies by Rajgopalan- Oxford University Press. ISBN: 9780198072089
- 5. Waste Water Treatment Rao Dutta. ISBN:9788120417120

REFERENCE BOOK

- 1. Environmental Engineering, Peavey, H.S, Rowe, D.R., and G. Tchobanoglous (1985), McGraw Hill Inc., ISBN-13: 978-0070491342
- 2. Water supply Engineering Environmental Engineering (Vol. I) P.N. Modi (2006), Standard Book House. ISBN-13: 978-8189401351
- Sewage treatment Disposal and waste water Engineering Environmental Engineering (Vol.II) P.N. Modi (2008), – Standard Book House. ISBN-10, 8190089324
- 4. Sewage Disposal and Air Pollution Engineering Environmental Engineering (Vol.II) S.K. Garg (1999), Khanna Publishers. ISBN-13: 978-8174092304
- 5. Wastewater Engineering Treatment and Reuse Metcalf Eddy, Inc. (2003), McGraw Hill Inc., ISBN-10: 0070418780

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)	
	COURSE NAME	Design of Steel Structures	
	COURSE CODE	CV 307	
	COURSE CREDITS	3	
RELEASE DATE : 01/07/2021	REVISION NO	1.0	

TEACHIN	G SCHEME	EVALUATION SCHEME :					
(HOUR	S/WEEK)	THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	0	35	35	30	Nil	Nil	100

COURSE OBJECTIVES:

1.CV307.CEO.1: To design steel elements subjected to Axial force/Shear force/ Bending moment or any combination of these actions for Limit State of Collapse.

1.CV307.CEO.2: To design a structure using software to perform tasks mentioned in CEO.1

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV307.CO.1: Explain the various design philosophies.[L2 Understanding].

- CV307.CO.2: Design connections of structural elements for the actions they are subjected to, using limit state method. [L4 Analyzing]
- CV307.CO.3: Design axially loaded steel elements using Limit state method.[L4 Analyzing]
- CV307.CO.4: Design steel elements subjected to bending and shear using Limit state method. [L4 Analyzing]

THEORY	7				
UNIT 1	Introduction and Design philosophies	3 HOURS			
Introduction to structural design, Structural systems, Properties of Structural Steel, I.S. Rolled Sec- tions, I.S. Specifications ,Factor of Safety, Permissible and Working Stresses, Elastic Method, Introduc- tion to Plastic theory, Introduction to Working stress method, Limit States of Design. Types of loads acting on structure, Introduction to IS Codes and specifications: IS 875, IS 800 Self study: Advantages of steel as a structural material, Types of structural steel, Mechanical prop- erties of cold- formed sections, structural pipe (tubes)) sections and their properties. Tasks: Planning and drawing of Structural frame system (beam to beam, beam to column, bracings and splicing details sheet drawn using drafting software)					
UNIT 2	Connections	10 HOURS			
Beam to beam, Beam to Column and Moment resistant connections Welded connections: Fillet and Butt weld subjected to shear and/or bending. Self study: Mechanical properties of bearing bolts and High strength friction grip bolt, advantages and disadvantages of bolted and welded connections. Case study: https://www.sciencedirect.com/science/article/pii/S0143974X08001685					
UNIT 3	Tension and compression Members	10 HOURS			
Design of Tension Member: Behavior, Modes of failure, permissible stress in tension and Design of single and double angle sections. Design of compression member: Modes of Failure of compression member, Buckling Failure: Euler's Theory, Effective Length, Slenderness Ratio, Design Formulae: I.S. Code Formulae. Designing of lacing and battening system for columns. Design of column base. Case study: https://www.sciencedirect.com/science/article/pii/S2352012416300248 torsional or buckling failure of column					
UNIT 4	Design of flexure member	6 HOURS			
Design of r compound	nembers subjected to flexure: Laterally restrained and unrestrained member beams.	s. Design of			
UNIT 5	Industrial sheds	5 HOURS			
Roof trusse Tasks : Fu Full imperi 1. Provision 2. Connect 3. Column	s, roof side coverings, design loads, design of purlins, design of truss members, of ll imperial size sheets al size sheets covering. Ins and details of purlins, trusses, rafter and tie level bracings. ions showing roof truss to the column cap plate. column bracings, gable end bracings, base plates, shear-keys, holding down b	olts.			
UNIT 6	Welded Plate Girder	6 HOURS			

Plate-girders including stiffeners, splices and curtailment of flange plates.

TEXT BOOK

- 1. S.K.Duggal, "Design of Steel structures", McGraw Hill, ISBN: 978-0136077909
- 2. N Subramanian,"Limit state design of Steel Structures", Oxford university press, ISBN10: 9780199460915

REFERENCE BOOK

- 1. IS 800-2007, IS 875 (part I to IV), IS 808, SP-6(4).
- 2. Karuna Moy Ghosh,"Practical Design of Steel Structures", Whittles Publishing ISBN 97814398357
- 3. Luís Simões da Silva, Rui Simões, Helena Gervásio, "Design of steel structures, Part 1-1 General rules and rules for buildings", First Edition Author(s): Print ISBN: 9783433029732

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)	
THIRD YEAR BACHELOR	COURSE NAME	Construction Planning and Management	
	COURSE CODE	CV325	
	COURSE CREDITS	4	
RELEASE DATE : 01/07/2021	REVISION NO	1.0	

TEACHIN	IG SCHEME	EVALUATION SCHEME :					
(HOUR	S/WEEK)	THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	30	20	150

Basic knowledge of Building Design and Construction:

COURSE OBJECTIVES:

- CV311.CEO.1: To understand basic concepts and novel technologies in project management and project planning.
- CV311.CEO.2: To acquire skills for planning, scheduling, controlling, forecasting, and earned value management of various construction projects.
- CV311.CEO.3: To take part in practical training in the planning and scheduling of construction projects.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV311.CO.1: Relate various project managerial and planning concepts with onsite work. L2

- CV311.CO.2: Analyze the technique of project scheduling network analysis L4
- CV311.CO.3: Utilize the methods of project controlling inventory management L3
- CV311.CO.4: Contrast on earned value management with administrative incentive schemes L4
- CV311.CO.5: Illustrate various concepts and methods for quality and safety management L2
- CV311.CO.6: Functionally design a schedule for a residential building. L4

THEORY	COURSE CONTENT				
UNIT 1	Project Management and Planning	4 HOURS			
Basic concepts of project management, Management theories, SWOT Analysis in construc- tion, Project Planning Methods, Work study, Method study, Construction Project Life- Cycle, construction site layout introduction. (Self-study component: Selection of con- struction enterprises management strategy based on the SWOT and multi-criteria analysis- https://www.sciencedirect.com/science/article/abs/pii/S164496651260096X)					
UNIT 2	Project Scheduling	8 HOURS			
Basics of project scheduling, Work Breakdown Structure, Line of balance, Development of network, Network Analysis PERT CPM, Estimating, analyzing, and managing the schedule, Tool for optimizing project schedules, Graphical Evaluation and Review Technique. (Self-study component: Scheduling of Industrialized Construction Project using Graphical Evaluation and Review Technique (GEBT)					
UNIT 3	Project Controlling	8 HOURS			
Crashing,Network compression: Least Cost and Optimum Duration, Resource allocation, Smoothening and leveling. (Self-study component: Project Acceleration via Activity Crashing, Overlapping, and Substitution: - https://ieeexplore.ieee.org/document/4604760)					
UNIT 4	Advance Techniques in Construction Management	6 HOURS			
Earned Value Management (EVM Techniques), Importance of EVM, Issues Involved and its solutions Administration of Incentive Schemes- Introduction to artificial intelligence technique, Introduction to BIM. (Self-study component: https://theirf.org/research/the-impact-and-potential-of-artificial-intelligence- in-incentives-rewards-and-recognition/2558/ Conceptual Framework and Roadmap Approach for Inte- grating BIM into Lifecycle Project Management)					
UNIT 5	Quality and Safety Management	6 HOURS			
Quality and safety concerns, Total Quality Control, Quality Control by statistical methods, Causes of Ac- cidents, safety measures and safety policies to be adopted Personal protective equipment, Occupational Safety and Health Administration (OSHA) guidelines, Hazard Identifications and Control Techniques (Self-study component: Case Studies on the Safety Management at Construction Site)					
UNIT 6	Inventory Management	6 HOURS			
Application of ABC and Economic Order Quantity analysis in inventory control, Use of Indices in materials/inventory mode ls Inventory Management, Materials Management Systems. (Self-study component: Construction Material Management through Inventory Control Techniques: - https://www.sciencepubco.com/index.php/ijet/article/view/16558/7073)					

PRACTICAL						
PRACTICAL NO.01	Project Planning using MS-Project	16 HOURS				
Developed a schedule for ten storied residential building using MS-Project.						
PRACTICAL NO.02Prepare Line of Balance for project no.14 HOURS						
Prepare LOB for above project.						
PRACTICAL NO.03	Presentation on Safety Measures at site	4 HOURS				
Students must visit any ongoing high-rise construction site and identify various safety measures. Collect						
the information and give presentation.						

TEXT BOOK

- 1. S. Seetharaman, "Construction Engineering and Management", Umesh Publications Delhi, sixth edition, 2009, ISBN:9382533095
- 2. B. Sengupta and H Guha, "Construction Management and Planning", Tata Mc-GrawHill Publishing Company, New Delhi, ISBN:0074623982
- 3. K.K.Chitkara,"Construction Project Management",McGraw-Hill Education third edition, ISBN:9339205448

REFERENCE BOOK

- 1. Newman,"Engineering Economic Analysis,"tenth edition,Oxford University,ISBN:091055496X
- 2. Dennis Lock," The Essentials of Project Management", 2nd Revised edition, Gower Publishing Ltd, ISBN:0566082241
- 3. P S GahlotandBMDhir,"Construction Planning and management",First Edition NewAge International Limited Publishers
- 4. Construction Project planning Scheduling By Charles Patrick, Pearson, 2012
- 5. Project Management-Planning and Control—Rory Burkey 4th ed.—Wiley,India.

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)	
THIRD YEAR BACHELOR	COURSE NAME	Solid Waste Management	
	COURSE CODE	CV326	
	COURSE CREDITS	4	
RELEASE DATE : 01/07/2021	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK)		THEORY				PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ISE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	25	25	150

PRE-REQUISITE:

COURSE OBJECTIVES:

CS326.CEO.1: To understand the core concepts of solid waste management and the importance of this on economic development and environmental protection.

CS326.CEO.2: To impart knowledge and skills in the collection, storage, transport, treatment, disposal and recycling options for solid wastes management.

CS326.CEO.3: To characterize the solid waste.

CS326.CEO.4: To describe the components of solid waste management and laws governing it.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV326.CO.1: Describe the functional elements of a solid waste management system.

- CV326.CO.2: Identify the methods of collection, storage and transportation of solid waste.
- CV326.CO.3: Evaluate recovery, treatment and disposal alternatives according to properties of solid waste.
- CV326.CO.4: Understand basic concepts in hazardous waste management and integrated waste management for urban areas.
- CV326.CO.5: Recognize the relevant smart techniques for collection, transport disposal of waste.
- CV326.CO.6: Acquire knowledge on waste to energy productions in the perspective of sustainable development.

THEORY	<i>:</i>	
UNIT 1	Fundamentals of Solid Waste	6 HOURS
Present sce gineering cl waste mana protection, Case Stud Reference Waste Sam	nario of Solid Waste Management (SWM), Need of SWM, Solid Waste: Sou lassification, Generation and Quantification, Characterization, Functional elem agement (SWM) system, Importance of SWM for economic development and er Linking SWM and climate change. ly: Solid Waste Management issues in different urban sub-urban areas of Indi : IS: 9234 -1979 (Reaffirmed 2003), Indian Standard for 'Method for Prepara ple for Chemical and Microbiological Analysis.	rces and en- nents of solid nvironmental ia. tion of Solid
UNIT 2	Waste Collection and Transport	6 HOURS
solid waster Case Stud Reference	s, Collection equipment, Transfer stations. ly: Five way segregation system at source of city Panaji, Goa, India. SOP on Segregation at Source by Ministry of Urban Development, Governm	ent of India.
UNIT 3	Treatment and Disposal Technologies	6 HOURS
Mechanical sition, Com Leachate m Case Stud Reference and Enviro	Biological treatment, Incineration, Pyrolysis, Gasification, Aerobic anaerobaposting Types of composting, Recycling of plastics, Biomethanation, Sanitaanagement. ly: Dumpsite Management / Legacy Waste Management for different cities in : 'Clean It Right: Dumping Management in India', a research report by 'Centra nment (CSE), New Delhi.	oic decompo- ary landfills, India. re for Science
UNIT 4	Hazardous Waste Management	6 HOURS
Need for hand nology and managemen	azardous waste management, Sources of hazardous wastes, Effects on commu Classification, Storage and Collection of hazardous wastes, Problems of haza at in developing countries, Pollution prevention and Waste minimization.	unity, Termi- ardous waste
UNIT 5	Advancement in Solid Waste Management	8 HOURS
Smart wast graphically	e segregation using Machine Learning (ML) techniques, Real time data moni mapping of: collection points, Bin locations, Solid waste management garage	itoring, Geo- es, Dumping

graphically mapping of: collection points, Bin locations, Solid waste management garages, Dumping grounds, Transfer stations, Ward offices on GIS maps, Smart bins, Automation of transfer station disposal sites for daily garbage inward and outward movement, Minimize human intervention, Use of IoT in SWM : Route optimization, RFID tagging.

Case Study: Integrated Solid Waste Management of 'Navi Mumbai Municipal Corporation', Maharashtra, India by using smart tools.

UNIT 6 Sustainable Techniques in SWM 8 HOURS

Waste to Energy: Energy recovery, Power generation, Blending with construction materials and Best Management Practices (BMP), Community based waste management, Waste as a Resource concept, Public private partnership (PPP), 7R approach, Circular Economy in SWM, Extended producer responsibility (EPR).

Case Study: Co-processing of Segregated Plastic Waste: An Initiative of Jabalpur Municipal Corporation and ACC–Holcim, Crushing units at Burari CD waste recycling plant. **Reference:** Manual on 'Waste To Wealth' published by 'Ministry of Housing and Urban Affairs', Government of India.

PRACTICALS:

Important Instructions:

- 1. Practicals has to be performed in a group of maximum 4 numbers of students.
- 2. Students has to submit the detailed report on each practical.

PRACTICAL-1	Physical Characterization of Solid Waste	6 HOURS			
Determine the physical characteristics of given solid waste sample and prepare a detailed re-					
PRACTICAL-2	Chemical Characterization of Solid Waste	6 HOURS			
Determine the chemical characteristics of given solid waste sample and prepare a detailed n					
PRACTICAL-3	Visit to Solid Waste Management Plant, Moshi, PCMC or Gasification Plant of Pune Municipal Corporation	2 HOURS			

Visit to the mentioned site and prepare a detailed report on it including the information about site, photographs, site map, process flow diagram, different treatment / disposal methods etc.

PROJECTS:

Important Instructions:

- 1. Projects has to be performed in a group of maximum 4 numbers of students.
- 2. Students has to submit the detailed report on project work done.

PROJECT-1	Lab Scale Study on Household Kitchen Waste Management	4 HOURS
	using IoT	

Prepare a lab scale model and carry out the project work at your individual house for mentioned waste. Maintain the weekly records of the observations and findings. Prepare a detailed report and short film on it.

PROJECT-2 Land Disputes for Treatment Sites and Legislation

Go through the various clauses and provisions of 'Solid Waste Management Rules, 2016' and 'Hazardous and Other Wastes (Management and Trans-boundary Movement) Rules, 2016'. Carry out the a case study related to land legal disputes related to solid waste treatment sites and draft a detailed report on it.

PROJECT-3 Awareness Programs

2 HOURS

2 HOURS

Organize a social awareness program for societies on importance of functional elements of solid waste management. Prepare a short film of the activity.

REFERENCES

- 1. Tchobanoglous, G., Theisen, H. and Vigil, S.A., 'Integrated Solid Waste Management Engineering Principles and Management Issues', McGraw Hill (1993).
- Rowe, R. Kerry, Quigley, Robert M., Brachman, Richard W. I., and Booker, John R., 'Barrier Systems for Waste Disposal Facilities', 2nd Edition 2004. Spon Press, Taylor Francis Group, London, ISBN 0-419-22630-3.
- 3. Vesilind, P.A. and Worrell, W. A., 'Solid Waste Engineering', 2nd Edition 2016, Cengage India.
- 4. Manual on 'Municipal Solid Waste Management, 2016' published by Central Public Health and Environmental Engineering Organization (CPHEEO), Ministry of Urban Development, Governement of India.

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF COMPUTER ENGINEERING AND TECHNOLOGY	W.E.F	AY: 2021 - 2022(R2019)	
THIRD YEAR BACHELOR	COURSE NAME	Project Management	
	COURSE CODE	CS361	
	COURSE CREDITS	2	
RELEASE DATE : 01/07/2021	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY			PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	DEMONSTRATION	
2	NA	NA	50	25	NA	NA	75

PRE-REQUISITE:

COURSE OBJECTIVES:

CS361.CEO.1: To create awareness of organizational strategy for project implementation.

CS361.CEO.2: To understand the rules for creating a Work Breakdown Structure for a Project.

CS361.CEO.3: To illustrate approaches for risk identification, analysis, and assessment.

CS361.CEO.4: To identify key characteristics of a high-performance project team.

CS361.CEO.5: understand the critical success factors in project management.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CS361.CO.1: Identify the Project Management Knowledge Areas and Processes.

CS361.CO.2: Classify the responsibilities while designing the Project Master Plan.

CS361.CO.3: Outline the Cost Estimating and Cost Escalation Process.

CS361.CO.4: Demonstrate and highlight The Processes of Project Quality Management.

CS361.CO.5: Analyze Management of a Project and Maturity Models.

THEORY :							
UNIT 1	Basics of Project Management	6 HOURS					
Contents: cesses, The Cycle, Proj Case Stud	Contents: Introduction, Need for Project Management, SMART Project, Knowledge Areas and Pro- cesses, The Project Manager and Project Management Office, Phases of Project Management Life Cycle, Project environments, Impact of Delays in Project Completions Case Study:						
UNIT 2	Systems and Procedures for Planning and Control	5 HOURS					
Contents: and Respon Charts and Case Stud	Contents: Type of Projects, The Project Master Plan, The Project Charter, Project Organization and Responsibilities, Work Breakdown Structure (WBS), Networks Diagrams, The Critical Path, Gantt Charts and Calendar Schedules, CPM, PERT (Project Management Tools: GanttProject, OpenProj) Case Study:						
UNIT 3	Cost Estimating, Budgeting and Risk Management	5 HOURS					
Contents: Estimates, ning, Risk ' Case Stud	Contents: Cost Estimating and Cost Escalation, Cost Estimating Process, Elements of Budgets and Estimates, Risk Management process, Project Risk by Phases, Risk Assessment, Risk Response Planning, Risk Tracking and Response Case Study:						
UNIT 4	Project Quality Management and Organization Behavior	5 HOURS					
Contents: The Concept of Quality, The Processes of Project Quality Management, Techniques for Quality Assurance during System Development, Stakeholders, Managing Participation, Teamwork and Conflict. Case Study:							
UNIT 5	The Corporate Context	5 HOURS					
Contents: Internation Case Stud	Project Management Maturity and Maturity Models, Knowledge and Time Mal Projects and associated problems, Entrepreneurs and Startup. ly:	Management,					

TEXT BOOK

- 1. Project Management for Business, Engineering, and Technology, 3rd Edition, John M. Nicholas and Herman Steyn ELSEVIER ISBN: 978-0-7506-8399-9.
- Project Management Planning and Control, Managing Engineering, Construction and Manufacturing Projects to PMI, APM and BSI Standards, Seventh Edition, Eur Ing Albert Lester, B H Copyright © 2017 Elsevier Ltd, ISBN: 978-0-08-102020-3.
- 3. Project Management in Product Development, George Ellis, Copyright © 2016 Elsevier Inc, ISBN: 978-0-12-802322-8.
- 4. Project Management best Practices, 4th Edition, HAROLD KERZNER, Wiley Copyright © 2018, ISBN 978-111-9-46885-1.

REFERENCES

- 1. Project Management Toolbox, Second Edition, Russ J. Martinelli, Dragan Z. Milosevic, Wiley Copyright © 2018, ISBN 978-1-118-97312-7.
- 2. Project Management Essentials You Always Wanted To Know, Kalpesh Ashar, VIBRANT PUB-LISHERS
- 3. The Practical guide to Project Management, 1st Edition, Christine Petersen, ISBN 978-87-403-0524-1
- 4. Beginning Project Management (e book), John M. Preston
- 5. Project Management from Simple to Complex, Russell W. Darnall, John M. Preston, The Open University of Hong Kong

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)	
THIRD YEAR BACHELOR	COURSE NAME	Skill development course II - (ETABS)	
	COURSE CODE	CV 342	
	COURSE CREDITS	2	
RELEASE DATE : 01/07/2021	REVISION NO	1.0	

TEACHIN	G SCHEME	EVALUATION SCHEME :					
(HOUR	S/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
0	04	00	00	50	00	25	75

COURSE OBJECTIVES:

CV304.CEO.1: To Understand the basics methodologies of analyzing and designing structures using software.

CV304.CEO.2: To apply various tools and techniques in analysis and design.

CV304.CEO.3: To design the various structures using ETABS.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV304.CO.1: Prepare structural framing plan. [Applying]

- CV304.CO.2: Assigning material properties, boundary conditions and loading to structural elements. [Applying]
- CV304.CO.3: Analyze the R.C. and steel structures for various load combinations. [Analysis]

CV304.CO.4: Interpret the results of software. [Applying] [L4 Analyzing]

CV304.CO.5: Design the structural elements (reinforced or fabricated) for static and dynamic loading as per Indian standards.

CV304.CO.6: Articulate importance of software's in research and industry by simulation work.

THEORY	<i>I</i>			
UNIT 1	Introduction to analysis and design software	8 HOURS		
Introductio interface, g similar stor	on to various analysis and design software, overview of ETABS, Unit syste generating grids for structural plan, Edit grid system and storey data, Masteries.	em, knowing er storey and		
UNIT 2	Modeling In ETABS	8 HOURS		
Defining m the structu	aterials and section properties, assigning material properties and boundary or ral elements.	conditions to		
UNIT 3	Gravity Loads and load combinations	6 HOURS		
Load calculation as per IS 875 part I II, defining and assigning primary load cases viz. Dead load, Live load and superdead load, Design load combinations as per IS 456 - 2000				
UNIT 4	Analysis and result interpretation	4 HOURS		
Perform analysis for defined load cases, Interpretation of analysis results viz. deflection, shear force, bending moment, axial force and reactions.				
UNIT 5	Design and optimization.	4 HOURS		
Design the	structural elements as per codal provisions. Optimization for structural eleme	nts.		
UNIT 6	Analysis of multi storied structures for lateral loading.	8 HOURS		
Conceptualization of lateral loading, Modeling, defining and assigning material properties, section properties, load cases and load combinations, base shear calculation and verification with manual calculations.				
UNIT 7	Analysis and Design of Industrial shed.	8 HOURS		
Modeling, defining and assigning material properties. Selecting steel sections as per Indian standards, load cases and load combinations as per IS 875 –III, performing analysis, and verification of section, design and optimization.				
UNIT 8	Generating the report.	2 HOURS		
Preparing of	customized final report as per requirement. Report reading and interpretation f	or execution.		

TEXT BOOK

1. Analysis Design of a Multistorey Building using STAAD.Pro E-TABS (with Manual Calculation) (First Edition, 2016), by D. Rajendran.

REFERENCE BOOK

- 1. ETAB 2016, User's Guide, July 2016, by Computers Structures Inc.
- 2. IS 800- 2007,
- 3. IS-875 Part I,II and III,
- 4. IS 1893-2016
- 5. IS 456- 2000

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS	
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)
	COURSE NAME	Project Design
	COURSE CODE	CV350
	COURSE CREDITS	2
RELEASE DATE : 01/07/2021	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY		PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
NIL	4	NIL	NIL	NIL	NIL	75	75

PRE-REQUISITE: NIL

COURSE OBJECTIVES:

CV350.CEO.1: To embrace innovation and creativity in project design while empathizing real world needs.

CV350.CEO.2: To acquaint with requirement analysis process and techniques.

CV350.CEO.3: To inculcate the agile project management tools for project design and planning.

CV350.CEO.4: To upskill in quality technical writing and related tools for project documentation.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV350.CO.1: Delineate the problem to be solved.

CV350.CO.2: Inculcate problem solving skills by critically analyzing real world needs, possible solutions and challenges.

CV350.CO.3: Carry out systematic literature review, planning and project design.

CV350.CO.4: Cognize the importance of documentation and report writing.

COURSE ABSTRACT

The project is most important part of undergraduate curriculum and enables student's to develop analytical, critical thinking, problem solving, and communication, cooperation, leadership skills. Project enable students to assimilate their learning to address a real-world interdisciplinary problems. The objective of undergraduate project is to analyze, design, implement, compelling solution to real world problems, and do performance evaluation with relevant documentation. To enhance the effectiveness and achieve worthwhile outcome of engineering knowledge that the student has acquired, the entire project process is divided in three phases, viz., Project Design, Project Implementation and Project Evaluation. The first phase of Project Design mainly focuses on formulating system's requirement, background/literature review, and defining scope, objective and apply project management/modeling tools to design proposed solution. This enables students to apply their technical acumen and innovativeness in proposing methodology, milestones, and expected outcome.

GUIDELINES

- 1. Every project group should consist of minimum 03 and maximum of 04 students.
- 2. The group members may be from different programs to support the interdisciplinary functioning.
- 3. Project group members and title of the project need to be approved by Project Guide and School.
- 4. Projects should preferably have a national/international industry/academic/research collaboration.
- 5. User Oriented Collaborative Design: The students need to identify the problem by discussion with various stakeholders, site visits, expert-opinions and various research articles.
- 6. The relevance and criticality of the problem to be solved, need to be established by collecting sufficient information and background study.
- 7. Define proposed solution and apply project management/modeling tools for project planning and design.
- 8. Critically analyze various solutions/techniques to solve real world problems and perform feasibility study to select and justify proposed solution.
- 9. Define outcome, milestones, definite roadmap for project design, implementation, evaluation and documentation.

Collaborative/Sponsored Project

- 1. Students are encouraged to take real time problems from national/international industry/academic/research organizations of repute (like NCL, BARC, IISER, DRDO, CDAC, etc) for final project work.
- 2. Project statement, scope of the work, objectives and final outcomes must be decided and approved by faculty mentor and collaborative organization, anytime before the commencement of the sixth semester.
- 3. Proposed Collaborative Project work need to reviewed by team of faculty reviewers to ensure assigned work is equivalent to the final undergraduate project work of minimum 12 months to 18 months.
- 4. Final assessment will be carried out in presence of faculty mentor, external mentor and examiner.

TIMELINE

- 1. Exploration of fore front research/specialization areas and opportunities in the various fields.
- 2. Formation of Project Group. Finalization of area of work/title as per forefront areas.
- 3. Exploration of abridged courses, valid resources, challenges, relevance with current opportunities.
- 4. Background study Systematic literature review.
- 5. Literature review documentation for Project Report and Research Article.
- 6. Project Review I Presentation.
- 7. Define problem statement and objectives.
- 8. Define scope of the work and Outline of the work.
- 9. Project Design, Modelling, Simulation etc.
- 10. Proposed Methodology of the solution and its documentation.
- 11. Project Review II Presentation.
- 12. Project Documentation: Ethics in Writing
- 13. Project Documentation: Final Synopsis
- 14. Project Documentation: Project Report Writing

ASSESSMENT and EVALUATION

The three member jury/committee will be appointed to monitor the progress and continuous evaluation of each project. One of the member will be the project guide. Assessment shall be done jointly by the guide and jury members.

- 1. Background Study and Literature Review (10 Marks)
- 2. Synopsis (5 Marks)
- 3. Project Review I: Problem Identification, Motivation, Relevance, Background Study, Literature Review (10 Marks)
- 4. Project Review II: Literature Review, Problem Definition, Project Planning, Analysis and Design (10 Marks)
- 5. Project Report (10 Marks)
- 6. Final Presentation and Demonstration (30 Marks)

REFERENCES

- 1. Nicholas John M., "Project Management for Engineering, Business and Technology", Butterworth Heinemann, ISBN: 9780080967042
- 2. Michelle Reid, "Report Writing (Pocket Study Skills)"', Second Edition, Macmillan Eduation.
- 3. Sara Efrat Efron, Ruth David, "Writing the Literature Review : A Practical Guide", Guilford Press, ISBN-13: 978-1462536894.
- 4. Leslie Lamport, "LaTeX: A document preparation system, User's guide and reference manual", Second Edition 1994, Addison Wesley, ISBN: 978-0201529838.
- Michel Goossens, Frank Mittelbach, Sebastian Rahtz, Denis Roegel and Herbert Voss, "The LaTeX Graphics Companion", Second Edition 2007, Addison-Wesley Professional, ISBN: 078-5342508925.

WEEK WISE ACTIVITIES : PROJECT DESIGN

SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022
THIRD YEAR BACHELOR	COURSE NAME	Project Design
CIVIL ENGINEERING	COURSE CODE	CV350
	COURSE CREDITS	2

WEEK NO	TASK TO BE DONE BY MENTOR	ACTIVITY TO BE PERFORMED BY STUDENTS GROUP	EXPECTED OUTCOME
Week 1	Exploration of fore front research/specialization areas and opportunities in the various fields.(School Level Awareness Session)	Students may introspect within themselves to think about their choice of domain areas	Students should be clear about subjects which would lead towards re- search or towards product related jobs
Week 2	Students are briefed about Specialization open electives tracks and interdisciplinary project available in the insti- tute.(School Level Awareness Session)	Students start deliberating on project ideas by referring to various sources linked di- rectly or indirectly to their minor track.	Open electives and project domain are chosen with close connectivity.
Week 3	Mentor guidelines for abridged courses, valid re- sources, challenges, relevance with current opportunities, Guideline to define roadmap of the project progress for three semester	Finalization of area of work/title as per fore front area of the project work, feasibility study, Define Roadmap of the Project.	Greater understand- ing of the project work and requirement. Synopsis of the Project
Week 4	Guide introduces relevant re- sources, recent papers / re- ports / manuals / books / moocs selective lectures / case study. Guideline to iden- tify valid resources and prop- erly read the contents of arti- cle. (School Level Awareness Session)	Valid resources are identified by group. Every student study these resources and ar- ticles in detail. Presentation by each student on their un- derstanding about all referred resources.	Collection of state of the art work documents / re- search papers / research material / industry report / books / blogs / Websites / manuals etc. for the de- cided topic.

Week 5	Guideline to perform back- ground study /Literature Re- view and various ways of doc- umenting literature review.	Documentation of referred re- sources, publication details, contribution and identifica- tion of opportunities/gap in the field.	Systematic literature re- view, background study, and its documentation.
Week 6	J	Project Review Presentation I	
Week 7 and 8	Guidelines for defining prob- lem statement, objectives, and scope of the work. (School Level Awareness Ses- sion)	Explore related work and de- fine problem statement, ob- jectives etc.	Refinement in proposed work /synopsis if any.
Week 9	Verification and Validation of Project Proposal created by students.	Refinement in the proposal as per suggestion by guide and review members.	Problem statement, Ob- jectives and Project Out- come.
Week 10	Introduction of tools for Project Design, Modelling, Simulation and planning etc. Verification of the Proposed Methodology of the solution.	Use various tools for Project Management, Project De- sign, and Simulation. De- scription of methodology. Define Algorithm Steps, Pro- cess, Modules, milestones, System Architecture etc.	Design Documentation, Graphical Presentation of proposed solution and entire planning of project implementation and evaluation.
Week 11	F	Project Review Presentation II	
Week 12 and 13	Introduction to Project Re- port Writing tools and plagia- rism checking. Guidelines for Project Documentation and Ethics in Writing. (School Level Awareness Session)	Prepare the Project Report as per format shared by Project Coordinator.	Project Documentation: Final Synopsis.
Week 14	Verification of Project Re- port, Final Synopsis prepared by Students.	Refinement in the project re- port as per suggestion by guide and review members.	Project Report.

Final End Semester Examination: Project Design, Report, Presentation and Demonstration.

NOTE:

- 1. School should organize awareness sessions on topics highlighted in RED.
- 2. Suggested to provide templates for project documents at the starting of the semester such as Synopsis, Literature Review, Project Report, Review Presentation I, II and Final Presentation

WEEK WISE ACTIVITIES : PROJECT DESIGN

SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)
THIRD YEAR BACHELOR OF TECHNOLOGY IN CIVIL ENGINEERING	COURSE NAME	Project Design
	COURSE CODE	CV350
	COURSE CREDITS	2

WEEK NO	TASK TO BE DONE BY MENTOR	ACTIVITY TO BE PERFORMED BY STUDENTS GROUP	EXPECTED OUTCOME
Week 1	Exploration of fore front research/specialization areas and opportunities in the various fields.(School Level Awareness Session)	Students may introspect within themselves to think about their choice of domain areas	Students should be clear about subjects which would lead towards re- search or towards product related jobs
Week 2	Students are briefed about Specialization open electives tracks and interdisciplinary project available in the insti- tute.(School Level Awareness Session)	Students start deliberating on project ideas by referring to various sources linked di- rectly or indirectly to their minor track.	Open electives and project domain are chosen with close connectivity.
Week 3	Mentor guidelines for abridged courses, valid re- sources, challenges, relevance with current opportunities, Guideline to define roadmap of the project progress for three semester	Finalization of area of work/title as per fore front area of the project work, feasibility study, Define Roadmap of the Project.	Greater understand- ing of the project work and requirement. Synopsis of the Project
Week 4	Guide introduces relevant re- sources, recent papers / re- ports / manuals / books / moocs selective lectures / case study. Guideline to iden- tify valid resources and prop- erly read the contents of arti- cle. (School Level Awareness Session)	Valid resources are identified by group. Every student study these resources and ar- ticles in detail. Presentation by each student on their un- derstanding about all referred resources.	Collection of state of the art work documents / re- search papers / research material / industry report / books / blogs / Websites / manuals etc. for the de- cided topic.

Week 5	Guideline to perform back- ground study /Literature Re- view and various ways of doc- umenting literature review.	Documentation of referred re- sources, publication details, contribution and identifica- tion of opportunities/gap in the field.	Systematic literature re- view, background study, and its documentation.	
Week 6	J	Project Review Presentation I		
Week 7 and 8	Guidelines for defining prob- lem statement, objectives, and scope of the work. (School Level Awareness Ses- sion)	Explore related work and de- fine problem statement, ob- jectives etc.	Refinement in proposed work /synopsis if any.	
Week 9	Verification and Validation of Project Proposal created by students.	Refinement in the proposal as per suggestion by guide and review members.	Problem statement, Ob- jectives and Project Out- come.	
Week 10	Introduction of tools for Project Design, Modelling, Simulation and planning etc. Verification of the Proposed Methodology of the solution.	Use various tools for Project Management, Project De- sign, and Simulation. De- scription of methodology. Define Algorithm Steps, Pro- cess, Modules, milestones, System Architecture etc.	Design Documentation, Graphical Presentation of proposed solution and entire planning of project implementation and evaluation.	
Week 11	Project Review Presentation II			
Week 12 and 13	Introduction to Project Re- port Writing tools and plagia- rism checking. Guidelines for Project Documentation and Ethics in Writing. (School Level Awareness Session)	Prepare the Project Report as per format shared by Project Coordinator.	Project Documentation: Final Synopsis.	
Week 14	Verification of Project Re- port, Final Synopsis prepared by Students.	Refinement in the project re- port as per suggestion by guide and review members.	Project Report.	

Final End Semester Examination: Project Design, Report, Presentation and Demonstration.

NOTE:

- 1. School should organize awareness sessions on topics highlighted in RED.
- 2. Suggested to provide templates for project documents at the starting of the semester such as Synopsis, Literature Review, Project Report, Review Presentation I, II and Final Presentation

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)
THIRD YEAR BACHELOR	COURSE NAME	Design of Reinforced Concrete Structures
	COURSE CODE	CV312
	COURSE CREDITS	4
RELEASE DATE : 01-07-2021	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE: The basic knowledge of mechanics of solids and structural analysis

COURSE OBJECTIVES:

CV312.CEO.1: To know the various design philosophies for concrete structures.

CV312.CEO.2: To analyze RC members for bending, shear and torsion.

CV312.CEO.3: To understand the limit states for RC structural members

CV312.CEO.4: To design RC members using limit state method.

COURSE OUTCOME:

The students after completion of the course will be able to

- CV312.CO.1: Describe the concept of elastic, ultimate, working stress and limit state method of design for reinforced concrete structures. [Understand].
- CV312.CO.2: Design one way, two way, rectangular slab, singly and doubly reinforced Rectangular beam and flanged beam by Limit State Method. [Design]
- CV312.CO.3: Design RC members for combined bending shear and torsion using Limit State Method. [Design].
- CV312.CO.4: Design short columns for various conditions. [Design]

CV312.CO.5: Design axially and eccentrically loaded rectangular footing. [Design]

THEORY					
UNIT 1	METHODS OF DESIGN OF CONCRETE STRUCTURES	6 HOURS			
Concept of elastic method ultimate load method and limit state methodIntroduction to working stress method-IS 456 - limit state philosophy as detailed in current IS code. Analysis for singly and double reinforced cross sections. Self-study: advantages of limit state method over other methods-design codes and specification					
UNIT 2	LIMIT STATE DESIGN FOR SHEAR, TORSION, BOND AND ANCHORAGE				
Behavior of RC beams in shear and torsion-shear and torsion reinforcement-limit state design of RC members for combined bending shear and torsion- use of design aids.					
UNIT 3	DESIGN FOR BEAM	8 HOURS			
Singly and crack width Self-study: UNIT 4 Design of o	doubly reinforced rectangular and flanged beams - design aids for flexure de n control. Study of RCC drawings and bar bending schedule DESIGN FOR SLAB AND STAIRCASE ne way and two way slabs - rectangular slab subjected to uniformly distributed	7 HOURS and concen-			
trated loads - boundary conditions and corner effects. Design of dog legged staircase. Self-study: design of cantilever slab FLAT SLAB					
UNIT 5	DESIGN OF COLUMNS AND FOOTING	7 HOURS			
Types of columns-analysis and design of short columns for axial uniaxial and bi axial bending- use of design aids. Types of footing, selection criteria for footing, Design of isolated rectangular footing for axial, Uniaxial and biaxial column Self-study: Study on reinforcement detailing as per IS 13920-2016 and Failure of footing					
UNIT 6	INTRODUCTION TO PRESTRESSES CONCRETE	6 HOURS			
Introduction, Basic Concepts, History of development of materials and prestressing, different methods of prestressing, Advantages and Limitations, IS provisions related to materials properties prestressing. Analysis of member for prestress and bending stresses at various stages; Pressure Line; Stress, strength					

and Load Balancing concepts; Losses in presstress; short term and long term deflections
PROJECT(G+1,Storied RC building perform individually)						
Activity1	Study on Various Codes Involved in Designs 2HOUR					
Study of IS 4	56-2000, IS 875 part 1,2,3,4 5, IS 1893-2016					
Activity 2	Structural Framing	2HOURS				
To interpret t	the orientation and positions for column and beam					
Activity 3	Beam Design	4HOURS				
Design and d	etailing of singly and doubly reinforced beams					
Activity 4	Slab and Stair Case Design	4HOURS				
Design and d	etailing of One way and two way. Design of dog legged stair case					
Activity 5	Column Design	4HOURS				
Design and d	etailing for short columns					
Activity 6	Footing Design	4 HOURS				
Design and d	etailing of Isolated rectangular footing					
Activity 7	Design and detailing of G+2 building on Software	4 HOURS				
Design of G+	2 storied building on softwares like Staad-pro, Etabs or SAP2000.					

TEXT BOOKS

- 1. N. Krishnaraju, and R. N.Pranesh," Reinforced Concrete Design", New Age International Pvt. Ltd., 2009
- 2. . Varghese P C, Limit State Design of Reinforced Concrete, Prentice Hall of India, Private, Limited New Delhi,2008.
- 3. Gambhir.M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.
- 4. Krishna Raju N., "Prestressed concrete", 5th Edition, Tata McGraw Hill Company, New Delhi, 2012

- 1. Prab Bhatt, T.J. MacGinley, Ban Seng Choo, "Reinforced Concrete Design: Design Theory and Examples", Third Edition, 2006, CRC Press, Taylor Francis Group, U.S.
- 2. Sinha, S.N., "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2002
- 3. Punmia B.C, Ashok Kumar Jain, ArunK.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 4. Mallick and Gupta, Reinforced Concrete Design, Oxford and IBH, Delhi, 1997 5 Unnikrishna Pillai,
- 5. Devdas Menon, "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., 2009
- 6. . Subramanian, N. ,"Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.
- 7. IS 456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000
- 8. SP16, IS 456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999
- Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.
- IS1343:1980, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012 IS 456:2000 and SP 16 are permitted in the Examination

(An Autonomous Ins	Academy of Engineering stitute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF M CIVIL E	IECHANICAL AND NGINEERING	W.E.F	AY: 2021 - 2022(R2019)
THIRD YEA	AR BACHELOR	COURSE NAME	Transportation Engineering
		COURSE CODE	CV313
	OMEENING	COURSE CREDITS	4
RELEASE D	ATE : 01-06-2021	REVISION NO	1.0

TEACHIN	IG SCHEME		EXA	AMINAT	TION SCHEMI	E AND MARKS	
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

 $\label{eq:pre-required} \textbf{PRE-REQUISITE:} Strength \ of \ Material \ , \ Geotechnical \ Engineering \ , \ Surveying \ \ Geospatial$

COURSE OBJECTIVES:

CV313.CEO.1: To understand the basic principles and practices of transportation engineering and urban transportation planning.

CV313.CEO.2: To have the capability to identify and solve transportation problems within the context of data availability and limitations of analysis tools

CV313.CEO.3: To gain the facility of utilizing the state of the art techniques and models in the field.

COURSE OUTCOME:

The students after completion of the course will be able to,

CV313.CO.1: explain basic transportation planning process

CV313.CO.2: design systems for traffic operations

CV313.CO.3: design highway geometry

CV313.CO.4: design bituminous mixes

CV313.CO.5: explain basics of bridge engineering

 $\mbox{CV313.CO.6:}$ demonstrate use of BIS, IRC $\,$ MORTH codes $\,$

planning p	ocess,4 stage demand, trip generation, trip distribution, trip assignment	modal split.
Self-study	component: Advancement in Transportation Case study: Evaluation of l	Development
Plans towa	rds Sustainable Urban Transportation: A Case Study of Pune Metropol	litan Region
(https://tri	d.trb.org/view.aspx?id=1250402) Further reading: Highway Economics	
UNIT 2	Traffic Engineering	8 HOURS
Content: F	indamental parameters of traffic stream, Fundamental relations of traffic flow	v, concept of
EPCU, capa	acity and level of service. Introduction to grade separated intersections, cloverle	eaf, trumpet,
flyovers. De	sign of isolated fixed time signal. Introduction to signal coordination Intelligent	Transporta-
tion System	s. Self-study component: Traffic regulations, one-way streets, traffic signs, roa	ad markings,
signals, war	rants. Case study: Evaluation of Development Plans towards Sustainable U	Jrban Trans-
portation:	A Case Study of Pune Metropolitan Region (https://trid.trb.org/view.aspx?	id=1250402)
Further rea	ding: Indo-HCM, VISSIM demonstration.	
UNIT 3	Geometric design of highway	8 HOURS
UNIT 3 Content: P	Geometric design of highway rinciples of highway alignment, requirements, highway cross section elements	8 HOURS
UNIT 3 Content: P ture, arbori	Geometric design of highway rinciples of highway alignment, requirements, highway cross section elements culture, pavement surface characteristics, sight distances, Design of horizonta	8 HOURS , road furni- al alignment:
UNIT 3 Content: P ture, arbori horizontal o	Geometric design of highway rinciples of highway alignment, requirements, highway cross section elements culture, pavement surface characteristics, sight distances, Design of horizonta surves, super elevation, transition curves. Design of vertical alignment: gradie	8 HOURS , road furni- al alignment: ents, vertical
UNIT 3 Content: P ture, arbori horizontal c curves, grad	Geometric design of highway rinciples of highway alignment, requirements, highway cross section elements culture, pavement surface characteristics, sight distances, Design of horizonta curves, super elevation, transition curves. Design of vertical alignment: gradie le compensation as per IRC codes. Demonstration of OpenRoad software. Sel	8 HOURS , road furni- al alignment: ents, vertical f-study com-
UNIT 3 Content: P ture, arbori horizontal o curves, grao ponent: Par	Geometric design of highway rinciples of highway alignment, requirements, highway cross section elements culture, pavement surface characteristics, sight distances, Design of horizonta curves, super elevation, transition curves. Design of vertical alignment: gradie le compensation as per IRC codes. Demonstration of OpenRoad software. Sel cking facility, Highway Lighting, IRC SP 048: Hill Road Manual Case study: V	8 HOURS , road furni- al alignment: ents, vertical f-study com- visit to study
UNIT 3 Content: P ture, arbori horizontal c curves, grac ponent: Par road cross s	Geometric design of highway rinciples of highway alignment, requirements, highway cross section elements culture, pavement surface characteristics, sight distances, Design of horizonta surves, super elevation, transition curves. Design of vertical alignment: gradie le compensation as per IRC codes. Demonstration of OpenRoad software. Self cking facility, Highway Lighting, IRC SP 048: Hill Road Manual Case study: V ection elements.	8 HOURS , road furni- al alignment: ents, vertical f-study com- Visit to study
UNIT 3 Content: P ture, arbori horizontal c curves, grac ponent: Par road cross s UNIT 4	Geometric design of highway rinciples of highway alignment, requirements, highway cross section elements culture, pavement surface characteristics, sight distances, Design of horizonta curves, super elevation, transition curves. Design of vertical alignment: gradie le compensation as per IRC codes. Demonstration of OpenRoad software. Sel cking facility, Highway Lighting, IRC SP 048: Hill Road Manual Case study: V ection elements. Pavement materials and construction practices	8 HOURS , road furni- al alignment: ents, vertical f-study com- Visit to study 6 HOURS
UNIT 3 Content: P ture, arbori horizontal c curves, grac ponent: Par road cross s UNIT 4 Content: E	Geometric design of highwayrinciples of highway alignment, requirements, highway cross section elementsculture, pavement surface characteristics, sight distances, Design of horizontacurves, super elevation, transition curves. Design of vertical alignment: gradiele compensation as per IRC codes. Demonstration of OpenRoad software. Selecking facility, Highway Lighting, IRC SP 048: Hill Road Manual Case study: Vection elements.Pavement materials and construction practicesituminous materials Bituminous mixes WBM WMM and requirements as per	8 HOURS , road furni- al alignment: ents, vertical f-study com- visit to study 6 HOURS per MORTH
UNIT 3 Content: P ture, arbori horizontal c curves, grac ponent: Par road cross s UNIT 4 Content: E codes. Type	Geometric design of highway rinciples of highway alignment, requirements, highway cross section elements culture, pavement surface characteristics, sight distances, Design of horizonta curves, super elevation, transition curves. Design of vertical alignment: gradie le compensation as per IRC codes. Demonstration of OpenRoad software. Selecting facility, Highway Lighting, IRC SP 048: Hill Road Manual Case study: Vection elements. Pavement materials and construction practices ituminous materials Bituminous mixes WBM WMM and requirements as per sof pavement components. Construction practices	8 HOURS , road furni- al alignment: ents, vertical f-study com- visit to study 6 HOURS per MORTH actices as per
UNIT 3 Content: P ture, arbori horizontal o curves, grace ponent: Par road cross s UNIT 4 Content: E codes. Type MORTH gu	Geometric design of highway Image: Comparison of the section of t	8 HOURS , road furni- al alignment: ents, vertical f-study com- visit to study 6 HOURS over MORTH actices as per specifications

Role of transportation in society, Different modes of transportation, Road classifica-

tion, network patterns, planning surveys, 20-year road development plans, basic Transportation

Introduction to Transportation Engineering

UNIT 5Pavement Design and highway maintenance8 HOURS

Content: Design of flexible pavements by IRC method. Design of rigid pavement by IRC method. Highway Maintenance: Pavement distresses, causes. Classification of Maintenance: routine maintenance, periodic maintenance. Importance of highway drainage. Case study: Site visit to highway construction site Further reading: IIT PAVE software

UNIT 6 | Introduction to Bridges

THEORY

UNIT 1

Content:

Content: Classification and types bridges, components of bridges, concept of economical span, afflux, HFL, scour depth. Loads on bridges, IRC load specifications.

5 HOURS

5 HOURS

Practical/project					
Project.01	Material conformity as per standards	20HOURS			
Confirm the quality of pavement materials by performing following tests. Perform following tests on materials and use findings to prepare a bituminous mix of required quality • Tests on Aggregates: Impact test, Abrasion test, crushing test, Shape test, Soundness test, Stripping value test, Specific Gravity • Tests on Bitumen: Penetration test, Softening point test, Viscosity test, Flash fire point test, Ductility					
• CBR test					
Self-study: Related IS codes					
Project.02	Determine of optimum bitumen content	06HOURS			

• Tests on bituminous mixes: Determination of flow stability, Bitumen extraction test

• Marshall mix design

Self-study: Related IS codes

TEXT BOOK

- S.K. Khanna and C.E.G. Justo, "Highway engineering", 10th Edition, Nem Chand and Brothers, 8185240930, 2017.
- Dr. L.R. Kadiyali, "Transportation Engineering", Khanna Book Publishing Co., 9788187325727, 2016
- 3. S.P. Bindra., "A Course in Highway Engineering", Dhanpat Rai and Sons, 8189929860, 2008.
- 4. S.P. Bindra, "Principles and practice of Bridge Engineering", Dhanpat Rai and Sons, 8189928848, 2012.
- 5. Principles of Transportation Engineering", Tata Mac-Graw Hill,
, $007462363 \mathrm{X}$,2000

REFERENCE BOOK

- 1. Rangawala, "Highway Engineering", Charotar publishing House, 9385039091, 2015.
- Dr. L.R. Kadiyali and N.B. Lal, "Principles and practices of Highway Engineering", Khanna Publishers, 8174091653, 2005
- 3. Partha Chakraborty , Animesh Das, , "Principles of Transportation Engineering", , Prentice Hall of India Pvt. Ltd., , 978-81-203-2084-0.
- 4. D. Johnson and Victor, "Essentials of Bridge Engineering", Oxford and IBH publishing co. Pvt. Ltd., , 9788120417175 , 2008.
- 5. S.Ponnuswamy, "Bridge Engineering", , Tata Mc Graw–Hill publishing co. Ltd., , 9339221079 , 2017

FURTHER LEARNING

1. BIS codes, MORTH standards, IRC standards

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)
THIRD YEAR BACHELOR	COURSE NAME	Water Resources Engineering
	COURSE CODE	CV314
	COURSE CREDITS	3
RELEASE DATE : 01-06-2021	REVISION NO	1.0

TEACHIN	G SCHEME		EXA	AMINAT	TION SCHEMI	E AND MARKS	
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	DEMONSTRATION	
3	NA	35	35	30	NIL	NIL	100

PRE-REQUISITE:

COURSE OBJECTIVES:

CV314.CEO.1: To estimate the hydrological parameters for a given catchment or a river basin.

CV314.CEO.2: : To analyze rainfall-runoff relationship using hydrograph methods and determine reservoir capacity as per the availability and demand of water

CV314.CEO.3: To study the design theories of canal systems and various irrigation practices and.

CV314.CEO.4: To estimate ground water availability using concepts of ground water hydrology.

CV314.CEO.5: To judge the applicability of any proposed process, strategy, or methodology for Water Resources systems engineering using the fundamental concepts

CV314.CEO.6: To analyse remote sensing data and geographic information system (GIS) data in hydrological modelling studies.

COURSE OUTCOME:

The students after completion of the course will be able to

CV314.CO.1: Analysis of hydro-meteorological data.

CV314.CO.2: : Estimation of reservoir capacity and yield.

CV314.CO.3: Design of irrigation canals and canal network

CV314.CO.4: Estimation of aquifer parameters.

CV314.CO.5: Apply system analysis techniques and solve complex problems in water resources engineering.

CV314.CO.6: Develop rainfall-runoff relationship hydrological models.

THEORY	7					
UNIT 1	Introduction: Water Resources Engineering	7 HOURS				
Introductio abstraction of precipita	Introduction to water resources engineering: Hydrologic Cycle, various components- precipitation, abstraction, Infiltration, Evaporation, runoff etc Stream gauging techniques. Self Study- Measurement of precipitation (Recommended Site Visit to IMD, Pune).					
UNIT 2	Unit hydrograph theory, floods and Reservoir Planning	8 HOURS				
Runoff: Hy Floods: wh peak discha lines Reserv inflow and	Runoff: Hydrograph Theory, Effective Rainfall, Derivation of unit hydrograph, S-curve hydrograph. Floods: what is flood, flood frequency analysis, probabilistic and statistical concepts in estimating peak discharge, various flood formulas, design flood for the reservoir, probable maximum flood, flood lines Reservoir Planning: Mass curve and demand curves, Fixation of reservoir capacity from annual inflow and outflow, Reservoir losses, Reservoir sedimentation, Trap Efficiency, Useful life of reservoir.					
UNIT 3	Irrigation Water Distribution Systems	8 HOURS				
riod, variou of cross dra design by n Network (F	Irrigation Water Requirements of Crops, Soil moisture, field capacity, crops cycle, crop period, base pe- riod, various seasons, duty, delta and various irrigation efficiency. Diversion head works: Layout, Types of cross drainage works Canal Systems: Types of canals, design principles of irrigation canals, Canal design by manning's formula, various canal structures Silt theories, Introduction to Pipe Distribution Network (PDN) for increasing water use efficiency Self Study- Assessment of Canal Revenue					
UNIT 4	Ground Water Hydrology	7 HOURS				
Occurrence of groundwater, types of aquifers, aquifer properties, Groundwater movement, Darcy's law, Conductivity and Transmissivity, yield from a well under steady state conditions, unsteady flow in unconfined aquifers, well losses and specific capacity. Self Study- Aquifer mapping and management in Groundwater Hydrology						
UNIT 5	Water Resources Systems Engineering	7 HOURS				
Use of System analysis techniques in water resources: optimization by conventional techniques like linear programming, dynamic programming and simulation. Use of Soft computing tools like ANN, Genetic algorithm, PSO, ACO in water resources planning, design and management						
UNIT 6	Remote Sensing and Computer Modelling in Hydrology	7 HOURS				
Principles of elements, F Rainfall-Ru	of Remote Sensing, Integration of remote sensing with GIS, Remote Sensing of Remote-Sensing applications to hydrology, Introduction to computer models for moff / Flood Flow Model. Assignment: Development of Rainfall Runoff model for	of hydrologic or hydrology, or catchment				

area.

Rev. Date: 01/07/2019

TEXT BOOK

- 1. Vedula S., and Majumdar P. P. "Water Resources Systems" Modeling Techniques and Analysis Tata McGraw Hill, 5th reprint, New Delhi, 2010.
- Punmia B. C., Irrigation and Water Power Engineering, Lakshmi Publications, 2016, ISBN-13: 978-8131807637.
- 3. Santosh Kumar Garg, Hydrology and Water Resources Engineering, Khanna Publishers, 2017, ISBN-13: 978-8174090614.
- 4. Santosh Kumar Garg, Irrigation Engineering and Hydraulic Structures, Khanna Publishers, 2017, ISBN-13: 978-8174090478.

- 1. Hall Warren, A. and John A. Dracup, "Water Resources System Engineering", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998.
- Engineering Hydrology, Subrahmanya K., 2008, Tata Mc Graw Hill Pub. Co., New Delhi, ISBN 13: 9781259029974
- Patra K.C., "Hydrology and Water Resources engineering", Narosa Publications, New Delhi, 2008, ISBN-13: 978-8173198465
- Jeya Rami Reddy. P, "A text book of Hydrology", Laxmi Publications, New Delhi, third edition, 2016, ISBN-13: 978-9380856049.
- Ram S. Gupta, "Hydrology and Hydraulic Systems", Waveland Press, INC., USA, Fourth edition, 2017, ISBN-10: 1-4786-3091-4.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)
THIRD YEAR BACHELOR	COURSE NAME	Operations Research Techniques in Civil Engineering
	COURSE CODE	CV332
	COURSE CREDITS	4
RELEASE DATE : 01-01-2022	REVISION NO	1.0

TEACHING SCHEME			EXA	AMINAT	TION SCHEMI	E AND MARKS	
(HOUR	S/WEEK)	THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

 $\label{eq:pre-requisite} \textbf{PRE-REQUISITE:} Construction \ Planning \ \ Management$

COURSE OBJECTIVES:

CV332.CEO.1: To calculate maximum profit or minimum cost using LPP

CV332.CEO.2: To execute Sensitivity Analysis/ Post Optimality Analysis

CV332.CEO.3: To predict optimum path for transportation and assigning jobs to people in an efficient way

CV332.CEO.4: To predict optimum period of replacement of equipment/machinery

CV332.CEO.5: : To execute sequencing techniques

CV332.CEO.6: To predict business strategies and analyzing queuing systems

COURSE OUTCOME:

The students after completion of the course will be able to,

- CV332.CO.1: Understand different optimization tools and Solve the Linear Programming problems using graphical and simplex method
- CV332.CO.2: Apply Linear Programming for Transportation problems solve assignment problems for optimal assignment of men/equipment.
- $\mathrm{CV332.CO.3:}$: Make decision of replacing equipment/machinery at optimal time.
- CV332.CO.4: Organize an appropriate order of operations.
- CV332.CO.5: :Decide strategy for business growth using game theory.
- CV332.CO.6: : Decide optimum service level by applying queuing theory.

THEORY	7					
UNIT 1	Introduction to Optimization Tools for Engineering	8 HOURS				
Introductio ming, Soft Problems, I Programmi	n to different optimization tools, their merits and demerits. Linear and Non-line computing Tools used for optimization, simulation. Introduction to Linear F Formulation and Solution using graphical method and simplex method, Typ ng Problems.	ear program- Programming bes of Linear				
UNIT 2	Duality and Sensitivity Analysis	8 HOURS				
Duality: D optimal and	efinition, Relationship between primal and dual solutions, Economic Interpre	etation, Post				
UNIT 3	Transportation and Assignment Problems	6 HOURS				
Transportation Problems: Finding an initial feasible solution, Checking optimality of transportation problem, improving the solution of transportation problem, Special cases in Transportation problems Assignment Problems: Hungarian method of Assignment problem, Maximization in Assignment prob- lem, unbalanced problem, problems with restrictions, travelling salesman problems.						
UNIT 4	Replacement Models	6 HOURS				
Replacement value, replat of items that	Replacement Models: Introduction, replacement of items that deteriorate ignoring change in money value, replacement of items that deteriorate considering change in money value with time, replacement of items that fail suddenly - Individual replacement policy.					
UNIT 5	Sequencing Models	6 HOURS				
Sequencing Models: Introduction, General assumptions, processing n jobs through 2 machines, processing 'n' jobs through m machines, Processing 2 jobs through m machines.						
UNIT 6	Game Theory / Queuing Theory	6 HOURS				
Game Theo Dominance Poisson arr Poisson arr	bry: Introduction, 2 person zero sum games, Maximin - Minimax principle, , Solution for mixed strategy problems Queuing Theory: Introduction, sing ivals - exponential service times with infinite population finite population, M ivals - Exponential service times with infinite population.	Principle of gle channel - Iulti-channel				

Assignment:	
Assignment.1	02 HOURS
Assignment on solution of linear pr manually and using MS Excel and o	ogramming problems using graphical method, simplex method ther Software)
Assignment.2	02 HOURS
Assignment on Dual and Primal LP	Problems (manually and using MS Excel and other Software).
Assignment 3	2 HOURS
Assignment on Sensitivity Analysis	(manually and using MS Excel and other Software)
Assignment 4	2 HOURS
Assignment on Transportation Prob	lems. (manually and using MS Excel and other Software)
Assignment 5	2 HOURS
Assignment on Assignment Problem	s. (manually and using MS Excel and other Software)
Assignment 6	2 HOURS
Assignment on replacement model	
Assignment 7	2 HOURS
Assignment on sequencing problem	
Assignment 8	2 HOURS
Assignment on Game Theory	
Assignment 9	2 HOURS
Assignment on Queuing theory	
Assignment 10	2 HOURS
Assignment on Simulation	
Assignment 11	2 HOURS
Assignment on Dynamic Programm	ng
Assignment 12	2 HOURS
Assignment on Non Linear Program	ming
Assignment 13	2 HOURS
Assignment on Modern Optimizatio	n Techniques
Project	14 HOURS
Project on Application of Operation	Research techniques on real life construction industry/ project

TEXT BOOK

- 1. S.D. Sharma, Operations Research, Kedarnath, Ramnathamp; Co., Meerut.
- 2. V.K. Kapoor, Operations Research , S. Chand Publishers, New Delhi.
- 3. R. Paneer Selvam, Operations Research , Second Edition, PHI Learning Pvt. Ltd., New Delhi.
- 4. Data Reconciliation by Prof. Shanker Narasimha.

- 1. 1. Hamdy, A. Taha, Operations Research-An Introduction, Sixth Edition, Prentice Hall of India Pvt. Ltd.
- 2. 2. Hrvey M. Wagner, Principles of Operations Research, Second Edition, Prentice Hall of India Ltd.
- 3. 3. Operations Research: Principles and Practice-Ravindrav, Philip Solberg, Wiley, India
- 4. 4. Engineering Optimazation Theory Practice S.S. Rao., Wiely.

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)		
THIRD YEAR BACHELOR	COURSE NAME	UNIT OPERATION PROCESSES EFFLU- ENTTREATMENT		
	COURSE CODE	CV333		
	COURSE CREDITS	4		
RELEASE DATE : 01-01-2022	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE:

COURSE OBJECTIVES:

CV333.CEO.1: To impart the knowledge on the concept and applications of Industrial Pollution.

- CV333.CEO.2: To understand principles of different unit operations and processes in Effluent treatment plants.
- CV333.CEO.3: To educate the students on the working principles and design of various physical, biological and chemical treatment systems for Industrial Effluent

CV333.CEO.4: To identify best applicable technologies for effluent treatment.

COURSE OUTCOME:

The students after completion of the course will be able to,

- CV333.CO.1: Identify and solve complex engineering problems related to industrial effluent.
- CV333.CO.2: Suggest and apply the suitable treatment processes for Industrial Effluent same in the field application.
- CV333.CO.3: : Design various unit processes for effluent treatment.
- CV333.CO.4: Identify and assess the characteristics of effluent water along with their environmental impacts

THEORY	ζ					
UNIT 1	Fundamental Physical Unit Operations	7 HOURS				
Factors in selection of unit operations and processes – Sequencing of unit operations and processes; Plant layout; Hydraulic considerations. Principal type of Reactors – Flow measurement – Screening – Flow Equalization – Mixing –static and Mechanical mixers – Coagulation and Flocculation – Perikinetic and Orthokinetic flocculation.						
UNIT 2	Principles of Sedimentation and Floatation	7 HOURS				
Sedimentat air flotation	Sedimentation – Type of setting – Removal ratio – Tray and Titles plate settlers Floatation - Dissolved air flotation.					
UNIT 3	Filtration	7 HOURS				
Filtration – – Mass trai	Filtration – Type of filters – Head loss through filters – Carman- Kozeny equation – Two film Theory – Mass transfer – Oxygenation capacity.					
UNIT 4	Biological Unit Processes	7 HOURS				
Kinetic pri Anaerobic	nciples of Biological growth – Suspended and attached growth processes – – Determination of kinetic coefficients.	Aerobic and				
UNIT 5	Chemical Unit Processes	7 HOURS				
Chemical precipitation – phosphate removal – Adsorption – Activated carbon – Isotherms – Disinfec- tion – principles – types of chlorination – De-chlorination						
UNIT 6	Miscellaneous Methods	7 HOURS				
Nitrification and Denitrification - Phosphorus removal -Heavy metal removal - Membrane Separa- tion Process - Air Stripping and Absorption Processes, Introduction to: HRTS and Phytoremediation Method for industrial effluent treatment– Principle, advantages limitations. Site visit to Effluent						

Treatment Plant is recommended.

Project		
Project.01	Fundamental Physical Unit Operations	HOURS

Checking the quality of Effluent being discharged to nearby water bodies and preparing a report on it Also, suggest the various treatment methods to dispose of it safely in the water body.

TEXT BOOK

- 1. Garg, S. K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Purkait M K, TAYLOR FRANCIS, "Treatment Of Industrial Effluents Case Studies", 1st Edition 2020.

- 1. METCALF EDDY, INC. Wastewater Engineering, Treatment, Disposal and Reuse", Fourth Edition, Tata McGraw-Hill Publishing company Limited, New Delhi, 2002.
- 2. Eckenfelder, W.W., "Industrial Water Pollution Control", Mc Graw Hill, 2001.
- 3. Arceivala, S.J., "Wastewater Treatment for Pollution Control", Tata McGraw-Hill, 2008.
- 4. Frank Woodard, "Industrial waste treatment Handbook", Butterworth Heinemann, New Delhi, 2001.
- 5. CASEY. T. J. "Unit Treatment Processes in Water and Wastewater Engineering", John Wiley Sons, England, 1993.
- ARUNDEL, John "Sewage and Industrial Effluent Treatment: A Practical Guide", Blackwell Science, 1995.
- 7. A.D. Patwardhan, PHI Learning, "Industrial Wastewater Treatment", 2009.

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)	
THIRD YEAR BACHELOR	COURSE NAME	OpenRoad Designer	
	COURSE CODE	CV343	
	COURSE CREDITS	2	
RELEASE DATE : 01-06-2021	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	DEMONSTRATION	
0	4	NA	NA	NA	NA	75	75

PRE-REQUISITE : Basic computer handling skills and Auto Cad

COURSE OBJECTIVES:

CV343.CEO.1: To learn basic commands of OpenRoad Designer

CV343.CEO.2: To design horizontal vertical road geometry of highway using OpenRoad Designer

COURSE OUTCOME:

The students after completion of the course will be able to

CV343.CO.1: demonstrate use of basic functions of OpenRoad Designer

CV343.CO.2: model terrain using total station data in OpenRoad Designer Environment

CV343.CO.3: create horizontal vertical alignment

CV343.CO.4: create 3D model of 2 / 4 lane rural corridor

CV343.CO.5: create and annotate cross section sheets and plan and profile sheets

PRACTICAL		
PRACTICAL 1	Introduction to Open Boads Designer	4HR
Introduction to the and MXROAD Ope IRC codes involved.	capabilities of the OpenRoads Designer software for existing GEOPAK, Ir nRoads Technology users. Introduction to the concept of BIM. Overview of	nRoads, various
PRACTICAL 2	Terrain modelling	4HR
Introduction to terr definitions, and mod slopes. Creation of t	rain model features including the boundary, triangles, and contours using lifying the default display parameters. Labeling terrain contours, spot elevation terrain by Graphical filter method. Creation of terrain from Ascii file.	feature ons and
PRACTICAL 3	Geometric Design	12HR
review and annotate as well as defining 2 PRACTICAL 4	e geometric elements. Geometric design on existing ground terrain and aerial i D/3D Views.	magery
Creating a Corridor creating dynamic cr Creating and assign	and 3D model for a 2 lane rural road: Creating Corridor, assigning template ross sections and reviewing the Corridor and 3D model. Designing Supereleving ing superelevation to a Corridor	e drops,
PRACTICAL 5	Corridor Modelling Quantities	6HR
Understanding varie	ous tools and methods to extract and compute quantities from the corridor n	nodel.
PRACTICAL 6	Drawing production	6HR
Creating and annota to label specific loca	ating cross section sheets and plan and profile sheets, adding individual annotation coordinates, station-offset values, elevations etc.	otations
PRACTICAL 7	Civil Cells	4HR
Introduction to civi cells delivered with	l cells, civil cell references are its applications in a practical workflow. Use the product, use civil cells from external sources and their incorporation wit	e 4 civil h ready

models.

PROJECT 1 Designing of 4-lane corridor

REFERENCES

- S.K. Khanna and C.E.G. Justo, "Highway engineering", Nem Chand and Brothers, 8185240930, 2017.
- 2. IRC related to geometric design of highway
- 3. Additional learning from Bentley's Open Road, Youtube channel (https://www.youtube.com/watch?v=Y36GiK3BPOw)

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)		
THIRD YEAR BACHELOR	COURSE NAME	Skill Development Course 3: WaterGEMS		
	COURSE CODE	CV344		
	COURSE CREDITS	2		
RELEASE DATE : 01-01-2022	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS				EXAMINAT			
(HOUR	S/WEEK)	THEORY			TUTORIAL/	PRESENTATION/	TOTAL		
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	DEMONSTRATION			
0	4	NA	NA	NA	50	25	75		

PRE-REQUISITE : Mechanics of Fluids Drinking Water and Sanitary Engineering

COURSE OBJECTIVES:

CV344.CEO.1: To understand the importance and uses of hydraulic simulation models and comprehend the essential concepts of modelling.

COURSE OUTCOME:

The students after completion of the course will be able to

CV344.CO.1: Summarize the basic principles of water distribution modeling. (L2)

CV344.CO.2: Apply WaterGEMS models to solve common water distribution system problems. (L3 CV344.CO.3: Develop a deeper understanding of model creation and analysis using WaterGEMS. (L4)

(
PRACTICAL		
PRACTICAL 1	Fundamentals of Hydraulics and Water Supply Engineering	6HRS
Revise the fundam models, Different available software	entals of hydraulics and water supply engineering, Need to optimize the water methods to solve the hydraulic problems, Water losses, Introduction to curelated to water distribution modeling.	supply irrently
PRACTICAL 2	Introduction to the User Interface of WaterGEMS	4HRS
Introduction to th	e user interface and the different menus along with its applications.	
RACTICAL 3	Assembling a Water Supply Model	6HRS
Assemble a water	supply model consisting of reservoirs, tanks, junctions, pipes, pumps and val	ves
PRACTICAL 4	Steady State Simulations	4HRS
Run the steady sta the given inputs of	te analysis for the prepared water supply network and interpret the results. design constraints if needed.	Modify
PRACTICAL 5	Extended Period Simulation	6HRS
Model a water dis engine and by add	bribution system over time using the extended period simulation (EPS) calculation demand patterns to junctions.	ulation
PRACTICAL 6	Alternatives and Scenarios Management	6HRS
Design and detaili	ng of Isolated rectangular footing	_
PRACTICAL 7	Reporting Results and Validation	4HRS
Interpret the resu coding reports.	ts prepared through flex tables, profiles, contouring, element annotation,	colour
PRACTICAL 8	Water Quality Analysis	6HRS
Perform a water of water from a given	uality analysis to compute water age, constituent concentration or percent node (trace analysis).	tage of
PROJECT 1	Design a Water Distribution Model using WaterGEMS	4HRS
Design a water di estimation, pipe ne for this system	stribution model for the community of 50,000 souls. It should consist of c twork, reservoirs, pumps and different values. Also perform the water quality ϵ	lemand analysis

REFERENCES

- 1. Prabhata K. Swamee AND Ashok K. Sharma, 'Design of Water Supply Pipe Networks', Wiley Interscience Publications, ISBN: 9780470178522.
- Bentley Systems, Thomas M. Walski, Donald V. Chase, Dragan A. Savic, Walter Grayman, Stephen Beckwith, Edmundo Koelle, 'Advanced Water Distribution Modeling and Management, First Edition, Bentley Institute Press, ISBN: 9781934493014.
- 3. 3. Nemanja Trifunovic, 'Introduction to Urban Water Distribution: Theory', Volume I, Second Edition, CRC Press, Taylor Francis Group, ISBN: 9780367504458.
- 4. 4. Nemanja Trifunovic, 'Introduction to Urban Water Distribution: Problems Exercises', Volume II, Second Edition, CRC Press, Taylor Francis Group, ISBN: 9780367504489.

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2021 - 2022(R2019)		
THIRD YEAR BACHELOR	COURSE NAME	Project Implementation		
	COURSE CODE	CV360		
	COURSE CREDITS	2		
RELEASE DATE : 01/07/2021	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
NIL	4	NIL	NIL	NIL	NIL	75	75

$\mathbf{PRE}\text{-}\mathbf{REQUISITE:}\operatorname{NIL}$

COURSE OBJECTIVES:

CV360.CEO.1: To understand latest techniques, algorithms, models and design process in the field of project

CV360.CEO.2: To implement/develop/experiment/simulate techniques, algorithms and processes in software and real time

CV360.CEO.3: To upskill in quality technical writing and related tools for project documentation.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV360.CO.1: Analyze techniques, algorithms and design process relate to the project

CV360.CO.2: Implement/develop/experiment/simulate/test techniques/process and infer conclusions from it.

CV360.CO.3: Cognize the importance of documentation and report writing.

COURSE ABSTRACT

The project is most important part of undergraduate curriculum and enables students to develop analytical, critical thinking, problem solving, and communication, cooperation, leadership skills. Project enable students to assimilate their learning to address a real-world interdisciplinary problems. The objective of undergraduate project is to analyze, design, implement, compelling solution to real world problems, and do performance evaluation with relevant documentation.

To enhance the effectiveness and achieve worthwhile outcome of engineering knowledge that the student has acquired, the entire project process is divided in three phases, viz., Project Design, Project Implementation and Project Evaluation.

After successful completion of project design phase in Sem V (project design), next step is project implementation (Sem VI). The goal of this phase of the project is to implement/develop/experiment/simulate/test the techniques/processes of the project and give a mature shape. The implementation can be a combination of algorithms, techniques, processes, testing etc. This will also include drawing inferences from the results and discussing them.

GUIDELINES

- 1. Preferably project group students of Sem V would be continued in this semester VI.
- 2. Every project group should consist of minimum 03 and maximum of 04 students.
- 3. The group members may be from different programs to support the interdisciplinary functioning.
- 4. Project group members and title of the project need to be approved by Project Guide and School.
- 5. Projects should preferably have a national/international, industry/academic/research collaboration.
- 6. User Oriented Collaborative Design: The students need to identify the problem by discussion with various stakeholders, site visits, expert-opinions and various research articles.
- 7. The relevance and criticality of the problem to be solved, need to be established by collecting sufficient information and background study.
- 8. Define proposed solution and apply project management/modeling tools for project planning and design.
- 9. Define outcome, milestones, definite roadmap for project design, implementation, tools, resources, performance evaluation and documentation.
- 10. Perform refinement of System architecture & methodology.
- 11. Students should give a mature shape to their idea in terms of implementation. This is expected in this semester. This may include one or many of these points. Implementation /development/experimentation/simulation/testing/building the techniques/processes

COLLABORATIVE/SPONSORED PROJECT

- 1. Students are encouraged to take real time problems from national/international industry/academic/research organizations of repute (like NCL, BARC, IISER, DRDO, CDAC, etc) for project work.
- 2. Project statement, scope of the work, objectives and final outcomes must be decided and approved by faculty mentor and collaborative organization at the start of semester VI.
- 3. Proposed Collaborative Project work need to be reviewed by team of faculty reviewers to ensure assigned work is equivalent to the final undergraduate project work of 12 months.
- 4. Final assessment will be carried out in presence of faculty mentor, external mentor and examiner.

TIMELINE

- 1. Freezing of project groups and titles. Refinement of title and objectives from Sem V should freezed by the time of first review.
- 2. Final Synopsis of the project. (To be done at guide level)
- 3. Methodology / System Design / Block Diagram should be properly explained by the student
- 4. Project Review I Presentation.
- 5. Project Implementation: Students should take the work in one and/more of the points. Like Implementation/development/experimentation/simulation/testing/experimental yield/building the techniques/processes etc...
- 6. Based on the points discussed in 5, student would be able to get results and discuss them. Students should be able to draw inferences from results.
- 7. Project Review II Presentation.
- 8. Quality of Publication and Researchers: Students would be educated on different technical papers and their importance (article types, journal metrics etc) along with author/researcher credentials.
- 9. Project Documentation: Project Report Writing

ASSESSMENT and EVALUATION

The three member jury/committee will be appointed to monitor the progress and continuous evaluation of each project. One of the member will be the project guide. Assessment shall be done jointly by the guide and jury members.

- 1. Project Review I: Problem Statement and objectives, Implementation plan & action (algorithms/techniques/models/mathematical understanding/implementation) (10 Marks)
- 2. An activity on illustrating methodology. This may inlcude paper reading activity: Read and Summarize a paper in 1 page (Individual to every student of the group). Any other activity can also be taken take would illustrate methodology (10 marks)
- 3. Project Review II: Results and Implementation, Observations, Inferences, Discussion on algorithms / techniques /models / testing) (10 Marks)
- Article Quality and Author Credentials: Information about Research Article types, paper quality metrics (SCI/SCOPUS/WOS) and Author Credentials (Citation count, h-index, I10 index etc) (5 marks)
- 5. Project Report (10 Marks)
- 6. Project: Documentation Final Presentation and Demonstration (30 Marks)

(Parameters of evaluation: Final implemented work, report, presentation and paper drafted based on work)

REFERENCES

- 1. Eng-Choon Leong et al, "Guide To Research Projects For Engineering Students", CRC press, Apple Academic Press Inc. ISBN: 9781482238778, 9781482238778.
- Larsen Samuel Bruning, "Doing Projects And Reports In Engineering", Macmillan Education UK, Bloomsbury Publishing PLC, 2019, ISBN: 9781352005639, 1352005638.
- 3. Michelle Reid, "Report Writing (Pocket Study Skills)", Second Edition, Macmillan Education.
- 4. Sara Efrat Efron and Ruth David, "Writing the Literature Review: A Practical Guide", Guilford Press, ISBN-13: 978-1462536894.
- 5. Helmut Kopka and Patrick Daly, "A Guide to Latex: Document preparation for beginners and advanced users", Addison Wesley, 1999.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2021 - 2022 (Rev. 2019)
THIRD YEAR BACHELOR	COURSE NAME	Employability and Career Development
	COURSE CODE	HP305
	COURSE CREDITS	2
RELEASE DATE : 01/07/2021	REVISION NO	1.0

TEACHIN	G SCHEME		EXA	MINAT	TION SCHEMI	E AND MARKS	
(HOUR	S/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	4	NIL	NIL	NIL	60	15	75

 $\label{eq:pre-regulation} \textbf{PRE-REQUISITE:} Professional Skills$

COURSE OBJECTIVES:

HP305.CEO.1: To define the importance of Employability skills in students life.

HP305.CEO.2: To explain them necessary, specific Employability Career Development skills.

HP305.CEO.3: To appraise students for placements through acquisition of professional skills.

HP305.CEO.4: To support them detect their present level in respect of each Career Development skill and show direction for improvement..

COURSE OUTCOMES:

The students after completion of the course will be able to,

HP305.CO.1: Relate the importance of Employability Career Development.

HP305.CO.2: Build necessary, specific professional skills

HP305.CO.3: Analyze the environment of employability.

HP305.CO.4: Develop various techniques of effective team building in their professional life.

SECTION A: Personal Development with the help of Professionals (30 Marks)							
PRACTICAL NO.01	Self Management	2 HOURS					
Concept of Johari Window of each quadrant in respect Stress management, Caree	v,Advantages and disadvantages of every quadrant,Identifying the tof self, Using the tools of self-evaluation, self-development and er anchor.	he proportion Goal Setting,					
PRACTICAL NO.02	Personal Interviews	4 HOURS					
Preparing for Interviews, Typical expected questions suggested responses, Posture, Body language, Greetings and pleasantries, , Handling unforeseen questions.							
PRACTICAL NO.03	Group Discussion and Public Speaking	4 HOURS					
Parameters of assess tion,Paraphrasing,Arguing skills.	sment,Initiating the discussion,Effective listening,Own g and counter-arguing, Giving direction to the discussion, Pul	contribu- blic Speaking					
PRACTICAL NO.04	Team Building and Motivation	2 HOURS					
Hallmark of effective team of teams goal, Leading mo	s, Barriers to teamwork, Subjugation of Individual interests for bivating team members.	• achievement					
PRACTICAL NO.05	Innovative Thinking	2 HOURS					
Relevance and importance and individual Brain Storn	of innovative thinking, Introduction to Brain Storming technic ming.	que,Collective					
PRACTICAL NO.06	Profile Development	4 HOURS					
Resume Writing: Introduce hancing tips for Resume on types, samples, structure ment of Purpose (SOP) pr	ction to the Resume, Key Components of a Resume and Cover and Cover Letter. Letter of recommendation (LOR) prepara ure, content tips format for letters of recommendation for stu- reparation: SOP Formats, Templates, and Guidelines for SOP	r Letter, En- tion: Details ident. State- Writing. Job					

application and professional email writing.

SECTION B:	Aptitude Training with the help of BtechGuru Platform (30 Marks)	18 HOURS
1. Number System	1	
2. HCF LCM , Su	rds and Indices.	
3. Percentages and	d Average.	
4. Time and work		
5. Time, Speed an	d Distance.	
6. Probability.		
7. Quadratic Equa	ations.	
8. Profit and Loss		
9. Simple and Cor	npound Interest.	
10. Ratio and pro-	portion.	
11. Permutation a	nd Combination.	
12. Boats and Stre	eams, Pipes and Cisterns.	
13. Mixtures and	Allegations, Mensuration.	
14. Data Interpret	ation – Tables, Pie Charts, Bar Graphs, Line Graphs.	

SECTION C: Final Assessment with the help of career Assessment Test 2 HOURS (15 marks)

TEXT BOOK

- 1. J.K.Gangal, A Practical Course in Effective English Speaking Skills, Prentice Hall India Learning Private Limited (2012), ISBN-10: 8120345843.
- 2. Jean Yates, Practice Makes Perfect: English Conversation, Premium Second Edition, McGraw-Hill Education; 2 edition, ISBN-10: 1259643271.
- 3. R S Agrawal, Quantitative Aptitude, S. Chand Publishing (2020), ISBN: 9789352534029, 9789352534029.
- 4. Shakuntala Devi, Puzzles to Puzzle You, Orient Paperbacks, ISBN: 9788122200140, 9788122200140.

- Stephen Covey: The Seven Habits of Highly Effective People, Simon and Schuster Ltd, ISBN: 0-671-71117-
- 2. Krishna Mohan, Meera Banerji, Developing Communication Skills, Birla Institute of Technology and Science, ISBN: 033392-919-5.
- Charles Kepner and Benjamin Tregoe, The Rational Manager: A systematic Approach to Problem Solving and Decision Making, Tata McGraw-Hill Publishing Company Ltd., ISBN:13:978-0070341753.
- 4. Priyadarshini Patnaik, Group Discussion and Interview Skills , Foundation Books, 1st Ed.- 2011, ISBN No.: 9788175967847, 8175967846.

MIT ACADEMY OF ENGINEERING, ALANDI

An Autonomous Institute Affiliated to

Savitribai Phule Pune University

Curriculum For Final Year Bachelor of Technology in Civil Engineering

2019-2023

MIT Academy of Engineering Autonomous Institute Affiliated to SPPU	COURSE STRUCTURE (REVISION 2019)						
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	:	2022-2023				
FINAL YEAR BACHELOR OF TECHNOLOGY IN	RELEASE DATE	:	01/06/2020				
CIVIL ENGINEERING	REVISION NO.	:	1.0				

SEMESTER: VII												
	COURSE TEACHING SCHEME AND MARKS							RKS	CR			
			Но	our/We	ek	т	THEORY			PRACT		E
TYPE	CODE	NAME	L	Р	т	MSE	ESE	IA	T/P	DM	T A L	I T
DC13	CV405	Estimating and Costing	3	2	-	35	35	30	50	0	150	4
DE01	CV47#	Discipline Elective - 1	3	-	-	35	35	30	0	0	100	3
OE03	CV42#	Open Elective-03 (CPM / EE)	3	2	-	35	35	30	50	0	150	4
SDP10	CV43#	Skill Development Course – 4 (CFD / QGIS)	-	4	-	0	0	25	50	0	75	2
SDP11	CV470	Project Evaluation	-	8	-	0	0	50	0	100	150	4
SDP12	CV400	Summer Internship	-	-	-	-	-	-	-	150	150	4
	T	TOTAL	9	16	0	105	105	165	150	250	775	21

	SEMESTER: VIII (PART A)											
COURSE TEACHING SCHEME EXAMINATION SCHEME AND MARKS									RKS	CR		
				ur/We	ek	т	HEORY		PR/	АСТ	T O	E D
TYPE	CODE	NAME	L	Р	т	MSE	ESE	IA	T/P	DM	T A L	I T
DC14	CV406	Design of Hydraulic Structures	3	2	-	35	35	30	50	-	150	4
DE02	CV47#	Discipline Elective - 2	3	-	-	35	35	30	-	-	100	3
SDP13	CV480	Capstone Portfolio	-	8	-	-	-	-	-	150	150	4
HSS7	HP405	Engineering Economics	2	-	-	-	50	25	-	-	75	2
HSS8	HP406	Psychology	2	-	-	-	50	25	-	-	75	2
	TOTAL 10 10 0 70 170 110 50 150 550							550	15			

ſ

	SEMESTER: VIII (PART B SEMESTER LONG INTERNSHIP)											
COURSE TEACHING SCHEME EXAMINATION SCHEME AND MARKS						RKS	C R					
		н	our/W	eek	THEORY			PRACT		T O	E D	
TYPE	CODE	ODE NAME	L	Р	т	MSE	ESE	IA	T/P	DM	A L	I T
DC14	CV406	Design of Hydraulic Structures	3	2	-	35	35	30	50	-	150	4
DE02	CVSWAYAM#	Discipline Elective - 2	3	-	-	35	35	30	-	-	100	3
SDP14	CV467	Semester Long Internship Design	-	-	-	-	-	-	-	150	150	4
SDP15	CV468	Semester Long Internship Implementation		-	-	-	-	-	-	150	150	4
	6	2	0	35	35	30	-	300	550	15		

Discipline Elective (DE) : 2 Courses							
SI. No.	Course Code	Course Name	Course Credit				
	CV471	Building Services					
1	CV472	Structural Dynamics & Earthquake Engineering					
1.	CV473	Railway Engineering	3				
	CV474	Numerical Methods in Civil Engineering					
	CV475	Foundation Engineering					
	CV476	Geospatial Tools and Techniques					
	CV477	Air and Noise Pollution					
	CV478	Finite Element Methods					
2	CVSWAYAM01	Discipline Elective Swayam MOOC Courses	2				
Ζ.	CVSWAYAM02	Discipline Elective Swayam MOOC Courses					
	CVSWAYAM03	Discipline Elective Swayam MOOC Courses					
	CVSWAYAM04	Discipline Elective Swayam MOOC Courses					
]	CVSWAYAM05	Discipline Elective Swayam MOOC Courses]				
	CVSWAYAM06	Discipline Elective Swayam MOOC Courses					

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS				
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)			
FINAL YEAR BACHELOR	COURSE NAME	Estimating and Costing			
	COURSE CODE	CV405			
	COURSE CREDITS	4			
RELEASE DATE : 01/07/2022	REVISION NO	1.0			

TEACHING SCHEME EXAMINATION SCHEME AND MARKS							
(HOUR	S/WEEK)		THEORY		PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE : Building Design and Construction

COURSE OBJECTIVES:

CV405.CEO.1: To prepare detailed estimate for buildings, roads and industrial structures

CV405.CEO.2: To calculate rates of different items of work

CV405.CEO.3: To estimate valuation of any existing structure

CV405.CEO.4: To summarize types of contracts, tenders and E tendering.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV405.CO.1: Describe the importance of estimation and able to use approximate estimate for rough estimation.(L2)

CV405.CO.2: Write specification for construction materials and activities.(L6)

CV405.CO.3: Prepare detailed estimate for building, road and industrial structure (L6)

CV405.CO.4: Calculate rates for various items of construction. (L4)

CV405.CO.5: Valuation report for residential building. (L6)

CV405.CO.6: Describe types of contracts and to draft tender notices.(L2)

THEORY	ζ					
UNIT 1	Introduction to Estimate	4 HOURS				
Introduction, Purpose, Types of estimates – Approximate estimates, detailed estimate. Approximate Estimates: Meaning, purpose, methods of approximate estimation of building and other civil engineer- ing projects like roads, irrigation/ water supply, sanitary engineering, and electrical works. Self-Study: Identifying components of interior furnishings with their types and market rates						
UNIT 2	Specifications	6 HOURS				
Specification tion, stone, Self-Study:	Specifications: Meaning, purpose, types. Drafting detailed specifications for major items like excava- tion, stone/ brick masonry, plastering, flooring, R.C.C. work. Self-Study: Drafting detailed specifications for any two items of work condition.					
UNIT 3	Taking out quantities	8 HOURS				
Methods of R.C.C fram Self-Study:	Methods of estimating- center-line methods of working out quantities. Calculation of quantities for R.C.C framed structures and steel structures including, Bar Bending Schedule Self-Study: P.W.D method, Calculation of quantities for Load-bearing structures					
UNIT 4	Rate Analysis	6 HOURS				
Standard I chinery for Self-Study:	Data, Observed Data, Schedule of Rates, Market rates, Assessment of Man Ho common civil works, Rate Analysis, and Cost Estimates using Computer softworks Collection of market rates and comparison with DSR rates	ours and Ma- ware				
UNIT 5	Valuation	6 HOURS				
Valuation: Purpose of valuation. Meaning of price, cost and value. Factors affecting 'value'. Types of value: only Fair Market Value, Book Value, Salvage/ Scrap Value, Distressed Value and Sentimental Value. Concept of free hold and lease hold property. Estimation versus valuation. Meanings of depreciation obsolescence. methods of valuation for different structures. Valuation of any building Self-Study: Preparation of valuation report of any existing structure.						
UNIT 6	Contracts and Tenders	6 HOURS				
Contract – – tender pr Self-Study	Types of contracts – Formation of contract – Contract conditions. Tender no ocedures – Drafting model tenders, E-tendering : Tender models, draft a detailed tender notice.	otices – types				

PRACTICALS/PROJECT: All assignments/projects to be submitted.				
PRACTICAL.1	Working out approximate estimate for civil structures	2 HOURS		

Working out approximate estimate for different Civil engineering projects like roads, irrigation/ water supply, sanitary engineering, and electrical works.

PROJECT .1	Working out quantities of RCC structure	10 HOURS
	8	

Working out Detailed Quantities /BOQ of single storied R.C.C. building including i) Architectural structural drawings ii) A detailed specification for all item of works iii) Bar bending schedule of reinforcement .

PROJECT .2	Working out quantities of Industrial Shed	4 HOURS
		i – – – – – – – – – – – – – – – – – – –

Working out detailed quantities/ BOQ of an industrial shed

PROJECT .3 | Working out quantities of Road (WBM/Concrete) 4 HOURS

Working out quantities of WBM or Concrete road.

PROJECT .4 | Working out quantities of interior Furnishing

4 HOURS

Analysis of Rates for any two Items of Works based on the prevailing market rates of various items and labor involved.

TEXT BOOK

- 1. Estimation and Costing in Civil Engineering by B.N. Dutta, 28th edition, UBS Publishers Pvt Ltd, ISBN 978-81-7476-770-7
- 2. Estimation, Costing, Specification and Valuation by M. Chakroborti, 28th edition, Chakroborti Publication, ISBN-13: 978-8185304366

- 1. Estimating, Costing and Valuation by R C Rangwala, Charotar Books Distributors, ISBN: 978-8185594859
- 2. Indian Practical Civil Engineers Handbook by P. N. Khanna UBS Publishers Pvt Ltd
- 3. IS 1200
- 4. Standard Bidding procedures/documents of MoRTH
- 5. Common schedule of rates

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)	
FINAL YEAR BACHELOR	COURSE NAME	Building Services	
	COURSE CODE	CV471	
	COURSE CREDITS	3	
RELEASE DATE : 01/07/2022	REVISION NO	1.0	

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY		PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	NIL	35	35	30	NIL	NIL	100

 $\ensuremath{\textbf{PRE-REQUISITE:}}\xspace$ Building Design and Construction

COURSE OBJECTIVES:

CV471.CEO.1: To develop proficiency in building service industry.

CV471.CEO.2: To know the practices of building services

CV471.CEO.3: To develop proficiency in calculating estimates of services

CV471.CEO.4: To encourage students for entrepreneurship in service industry.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV471.CO.1: Analyze plumbing and drainage plan.

CV471.CO.2: Explain the concepts and techniques of water proofing and rain water harvesting

CV471.CO.3: Prepare reflected ceiling plan

CV471.CO.4: Define principles of air conditioning and thermal insulation

CV471.CO.5: : Illustrate firefighting system

CV471.CO.6: Identify materials of acoustics and sound insulation.

THEORY	ζ	
UNIT 1	Plumbing and Sanitation	6 HOURS
Plumbing S Stoneware, : National	Systems, Various Materials for system like PVC, GI, AC, CI, HDPE, PPR (Per Various types of traps, Fittings, Chambers, Concept of Plumbing Drainage plan Standard Plumbing Code, preparation of plumbing and drainage plan	x Pipes), and n. Self-Study
UNIT 2	Rain water harvesting and water proofing	6 HOURS
Introductio systems, Sp used, Non Materials c	on to rainwater harvesting, concept of rain water Gutters, rainwater outlet becifications as per IS Code 15797. Waterproofing of New and Existing Structu Destructive Water Proofing, Water proofing of terraces, Damp Proofing. Self- of waterproofing	Down Tank res Materials Study : New
UNIT 3	Electrification and Illumination	6 HOURS
Concealed electrical la Distributio Self-Study:	and Open Wiring, Requirements and Location of various points, Concept ayout plans Natural and artificial lighting-principles and factors, arrangement of n of illumination, Utilization factors, illumination layout plans, types of switche Reflected ceiling plan	of earthling, of luminaries, and sockets
UNIT 4	Air conditioning and Thermal Insulation	6 HOURS
Air conditi concept, P: Study: Ove	oning: Purpose, Classification, Principles, Various Systems. Thermal Insulat rinciples, Materials, Methods, Computation of Heat loss and heat gain in B erview of high performance of glass with respect to heat transfer	ion: General uildings Self-
UNIT 5	Fire Safety	6 HOURS
Fire resista of fire resis resistance t	ance in building, Fire protection precautions, confining of fire, fire hazards, Clauding materials, fire load, firefighting system layout Self-Study: Building materials for fire	haracteristics ials and their
UNIT 6	Acoustics and Sound Insulation	6 HOURS
Acoustics: ditions for Transmission torium/ some materials.	Absorption of sound, various materials, Sabine's formula, optimum reverberati good acoustics. Sound Insulation: Acceptable noise levels, Noise prevention on of noise. Noise control. Practical Applications. Self-Study: Visit to cinem und recording studios and identifications of acoustics and sound insulation te	on time, con- at its source, a hall/ audi- chniques and

- Building Energy Management Systems by G. Levermore Taylor and Francis. 2nd edition.. ISBN 978-04- 1926140-7
- 2. Building Services Engineering by David V. Chadderton , Taylor and Francis. 5th edition ISBN-10: 0415413559
- 3. Building Construction by Dr. B.C.Punmia , Ashok Kumar jain , jain Book Depot , ISBN-13: 978- 8131804285

- Building Drawing with an Integrated Approach to Built Environment by M G Shah, C M Kale, S. Y. Patki; 5th Edition ISBN: 9780071077873
- 2. Building Services Engineers, 2015, by Peter, Trenter, N. A., Earthworks : a guide / London : ICE Publishing, 2015 ISBN: 9780849374920
- 3. SP 35, IS 3067, IS 3646
| MIT Academy of
Engineering
(An autonomous Institute Affiliated to SPPU) | COURSE SYLLABUS | | | |
|---|--------------------|--|--|--|
| SCHOOL OF MECH AND CIVIL ENGG. | W.E.F | AY: 2022 - 2023(R2019) | | |
| FINAL YEAR BACHELOR | COURSE NAME | Structural Dynamics
and Earthquake
Engineering | | |
| | COURSE CODE | CV472 | | |
| | COURSE CREDITS | 3 | | |
| RELEASE DATE : 01/07/2022 | REVISION NO | 1.0 | | |

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	NIL	35	35	30	NIL	NIL	100

 $\ensuremath{\textbf{PRE-REQUISITE}}$: Structural Analysis and Design

COURSE OBJECTIVES:

CV472.CEO.1: To introduce the relevant principles and prevalent practices in Engineering Seismology from Earthquake Engineering viewpoint.

CV472.CEO.2: To know the different concepts of Structural Dynamics and Earthquake Engineering

CV472.CEO.3: To understand the special provisions and requirements of structures for their safety against earthquake forces.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV472.CO.1: Apply fundamentals of structural dynamics and earthquake engineering to different structures

CV472.CO.2: Analyse and design of structural components from seismic considerations

CV472.CO.3: Analyse and implement protective measures and strengthening techniques.

UNIT 4 Seismic foundation design

Type of forces generated due to earthquake, effects on different types of foundation, design of RCC isolated footing for earthquake loading, liquefaction, causes and its remedial measure. Case Study-Bhuj Earthquake: Preliminary Report 2001

UNIT 5 7 HOURS **Control systems and Disaster Management**

Introduction of different control systems: Passive control: base isolation and active control: bracing system, TMD etc and some latest invention. Introduction to Disaster Management: Types of Disaster, Phases of disaster management, Disaster rescue, psychology and plan of rescue operations. Case Study-Disaster Management: Kedarnath, Uttarakhand 2013

UNIT 6 Strengthening and Retrofitting of Structures

Strengthening and Retrofitting: Need of retrofitting, Evaluation of existing structures, aging, weathering, development of cracks, improper load Path, asymmetry. Materials and equipment's for restoring and retrofitting, methodology of retrofitting for walls, slabs, roofs, columns, foundations. Case Study-Seismic Retrofitting of Reinforced Concrete Buildings

THEORY

UNIT I Introduction to geology and earthquakes 6 HOU	\mathbf{RS}
--	---------------

Introduction to Geology, configuration of tectonic plates in a globe, influence of Geology on earthquake, behavior of plates, their motion and effects, causes of earthquake and their Characteristics, Earthquake parameters, magnitudes, intensity, scales, classification of earthquake seismic zoning of India, seismic coefficients for different zones. Self-Study - Study of damages caused due to past, earthquakes in/ outside India and remedial measures.

UNIT 2 Vibrations Systems	6 HOURS
---------------------------	---------

Vibrations - definition, causes, classifications. Single Degree of Freedom systems (SDOF) - Free, forced, damped, un-damped vibrations with basic examples. Introduction to Multi-degrees of Freedom systems (MDOF) - derivations of related equations and solutions to two degree and three degree of freedom systems. Self-Study – Lumped and distributed parameters of vibrations systems

Introduction to IS1893 (Part-I): 2002, Seismic design Philosophy, provision, Seismic coefficient method. Response Spectra, Basic requirement, estimation of story shear, effect of unsymmetrical geometry and

UNIT 3 Seismic design of RC structure

masses, mass center and stiffness center, estimation of story shear for symmetrical and torsion for unsymmetrical buildings. IS code provision to response spectrum. Self-Study - Concept of ductile detailing, IS 13920 (1993) provisions for RC frame.

Format No.: MITAOE/ACAD/ 002 Rev. No. : 2.0 Rev. Date : 01/07/2019

7 HOURS

6 HOURS

8 HOURS

- 1. S K Duggal, "Earthquake Resistant Design of Structures", Oxford University Press, 2013.
- 2. Dr. Vinod Hosur , "Earthquake Resistant Design of Building Structures" Wiley India , 2012
- 3. B Chandra, Jai Krishna, Ar Chandrasekaran , "Elements of Earthquake Engineering" Standard Publishers Distributors, 2000
- 4. Anil K. Chopra, "Dynamics of Structures Theory and Applications to Earthquake Engineering", Pearson, 3rdEdition, 2011
- 5. Gary Hart and Kevin Wong, "Structural Dynamics for Structural Engineers", John Wiley and Sons, 2000
- 6. J. W. Smith, "Vibration of Structures. Application in Civil Engineering Design", Chapman and Hall, 1988

- 1. Mario Paz and William Leigh, "Structural Dynamics Theory and Computation, Updated With Sap 2000", 5thEdition, Kluwer Academic Publishers
- 2. Clough and J. Penzien, "Dynamics of Structures", Computers Structures, Inc., University Ave, Berkeley, USA, 1995
- 3. Leonard Meirovitch, "Fundamentals of Vibrations", Tata Mc Graw Hill, 2001
- 4. IS 1893(2016) Criteria for Earthquake Resistant design of buildings (Part I): General Provisions and Building Code of Practice (Sixth Revision), Bureau of Indian Standards, New Delhi
- 5. IS 13301(1997) Vibration isolation of machine foundations Guidelines
- 6. IS 2974 (2008) Code of practice for design construction of machine foundation for reciprocating type machines.

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS				
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)			
FINAL YEAR BACHELOR	COURSE NAME	Railway Engineering			
CIVIL ENGINEERING	COURSE CODE	CV473			
	COURSE CREDITS	3			
RELEASE DATE : 01/07/2022	REVISION NO	1.0			

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	NIL	35	35	30	NIL	NIL	100

PRE-REQUISITE: Basic knowledge Transportation Engineering

COURSE OBJECTIVES:

CV473.CEO.1: Comprehend different parts of the rail track, their functions and its operation system with respect to construction and engineering applications.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV473.CO.1: explain different components of railway track

CV473.CO.2: calculate different resistances to the traction

CV473.CO.3: design geometry of railway track

CV473.CO.4: explain traffic regulatory system for railway

CV473.CO.5: describe facilities at railway station yards

CV473.CO.6: explain essentials of track maintenance

THEORY	<i>4</i>	
UNIT 1	INTRODUCTION TO RAILWAY ENGINEERING	10 HOURS
History of nance. Bas IRS and Ra speed, trac Recent dev	Indian railways, importance of railways. Role of civil engineers in construction sic requirements and selection of an ideal alignment. Cross section of permanen ail-wheel interaction. Coning of wheel and tilting of rail. Resistance to-friction, k irregularity, wind, resistance to gradient, curvature, starting and accelerating relopments in the field of Railway Engineering	a and mainte- nt way as per wave action g. Self-study
UNIT 2	COMPONENTS OF RAILWAY TRACK	10 HOURS
specificatio ing.Track I study track	ns, Track fittings and fastenings, concept of SEJ, LWR, SWR. Necessity of Point Layouts and Sketches of Turn Out, Types of Crossing, Types of Track Turnouts a components	ts and Cross s Site visit to
UNIT 3	GEOMETRIC DESIGN OF TRACK	8 HOURS
UNIT 3 Necessity a compensati	GEOMETRIC DESIGN OF TRACK and Details of geometric design of track, Curves and Superelevation, track grad ion on curves. Demonstration: OpenRail Designer software	8 HOURS dients, Grade
UNIT 3 Necessity a compensati UNIT 4	GEOMETRIC DESIGN OF TRACK and Details of geometric design of track, Curves and Superelevation, track grad ion on curves. Demonstration: OpenRail Designer software MAINTENANCE OF RAILWAY TRACK	8 HOURS dients, Grade
UNIT 3 Necessity a compensati UNIT 4 TIntroduct for Mainte Surface De	GEOMETRIC DESIGN OF TRACK and Details of geometric design of track, Curves and Superelevation, track grace ion on curves. Demonstration: OpenRail Designer software MAINTENANCE OF RAILWAY TRACK tion of Maintenance Program: Monsoon, Pre-Monsoon Post- Monsoon Maintenance, Routine Maintenance, Tools for Railway Track Maintenance and The fects and Their Remedial Measures	8 HOURS dients, Grade 4 HOURS nance, Causes eir Functions
UNIT 3 Necessity a compensati UNIT 4 TIntroduct for Mainter Surface De UNIT 5	GEOMETRIC DESIGN OF TRACK and Details of geometric design of track, Curves and Superelevation, track gradient on curves. Demonstration: OpenRail Designer software MAINTENANCE OF RAILWAY TRACK tion of Maintenance Program: Monsoon, Pre-Monsoon Post- Monsoon Maintenance, Routine Maintenance, Tools for Railway Track Maintenance and The fects and Their Remedial Measures RAILWAY STATIONS YARDS SIGNALING AND INTERLOCK-ING	8 HOURS dients, Grade 4 HOURS nance, Causes eir Functions 8 HOURS

- 1. Satish Chandra M.M. Agarwal, "Railway Engineering", (2nd Edition) 2013, Oxford Higher Edu., ISBN : 9780198083535
- S.C. Saxena, S.P. Arora, "A Text Book of Railway Engineering", Dhanpat Rai Publications (p) Ltd, 2010, ISBN: 978-8189928834.

- 1. Indian Railway Permanent way manual. 2020
- 2. J.S. Mundrey, "Railway Track Engineering", 5th Edition, 2017, Tata McGraw Hill Publications, ISBN: 9352606485.
- Clifford F. Bonnett, "Practical Railway Engineering", 2nd Edition, 2005, Imperial College Press, ISBN: 1860945155.
- 4. FURTHER LEARNING : Railway Engineering: An Integral Approach edX www.iricen.com

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS				
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)			
FINAL YEAR BACHELOR	COURSE NAME	Numerical Methods in Civil Engineering			
	COURSE CODE	CV474			
	COURSE CREDITS	3			
RELEASE DATE : 01/07/2022	REVISION NO	1.0			

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	NIL	35	35	30	NIL	NIL	100

PRE-REQUISITE:

COURSE OBJECTIVES:

CV474.CEO.1: Understand Numerical Techniques for solving complex Civil Engineering Problems. CV474.CEO.2: Develop logical sequencing for solution procedure.

CV474.CEO.3: Optimize the solution for different real life problems with available constraints

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV474.CO.1: Describe various concepts of Numerical Methods and Mathematical Modelling

CV474.CO.2: Select appropriate Numerical Methods to Find the Roots of the Equations.

CV474.CO.3: Analyse simultaneous Equation to solve the problems.

CV474.CO.4: Discover relationship between experimental values in the form of Mathematical Equation.

CV474.CO.5: Illustrate Solutions for real life problem using Numerical Integration.

CV474.CO.6: Evaluate a solution of Differential Equation in given area for various boundary conditions

THEORY	7				
UNIT 1	Introduction to Numerical Methods	6 HOURS			
Basic concellute, Relative relevance to Self Study-to and prepare	ppts of Numerical Methods, Mathematical modeling, errors analysis - Types of Eve, Algorithmic, Truncation, Round off Error, Error Propagation, Concept of p numerical methods. Study at least 5 Research Papers on Applications of Numerical methods in Civil e report of the same.	Errors: Abso- convergence- Engineering			
UNIT 2	Roots of Equations	7 HOURS			
Roots of Ec approximat Self Study- tions	uations, Bisection Method, False position Method, Newton Raphson method ar ion method. Prepare a Template on suitable platform for finding the Roots of Linear/Non T	nd Successive Linear Equa-			
UNIT 3	Simultaneous Equations	7 HOURS			
tial Pivotin Self Study- tions	g, Gauss-Seidal Method, Gauss- Jordan Method. Prepare a Template on suitable platform for solving Linear/Non Linear Simulta	aneous Equa-			
UNIT 4	Curve Fitting and Interpolation	7 HOURS			
Curve Fitti Interpolatic Self Study-	ng - Least square technique- Straight line, Exponential equation. Interpolatio on, Newton's Forward interpolation. Prepare a Template on suitable platform for Linear/Non Linear Curves and Ir	n Lagrange's nterpolation			
UNIT 5	Numerical Integration	7 HOURS			
Trapezoidal rule, Simpson's Rule, Gauss Quadrature 2 point and 3 point method. Double Integration: Simpson's 1/3rd Rule. Self Study-Prepare a Template on suitable platform for Numerical Integration					
UNIT 6	Ordinary Differential Equations	6 HOURS			
Taylor's Ser Fourth Ord Self Study- Equations	ries method; Euler's method; Modified Euler's method, Runge- Kutta method ler) Prepare a Template on suitable platform for solving Linear/Non Linear Ordinar	(Second and y Differential			

- 1. Chapra, Cannale, "Numerical Methods for Engineers", 6th edition, Tata McGraw Hill Edition
- 2. Dr. B. S. Garewal, Numerical Methods in Engineering and Science, Khanna Publishers.

- 1. Sastry S. S., "Introductory Methods of Numerical Analysis", 5th edition, Prentice Hall of India Delhi.
- 2. N
 Krishna Raju Ku Muthu, Numerical Methods For Engineering Problems, 2nd edition, Macmillan Children's Books
- 3. Amos Gilat, "Numerical Methods for Engineers and Scientists", 3rd Edition, Wiley International, 2014.
- 4. Ascher, U.M. and Greif, C., "A First Course in the Numerical Methods", SIAM Publication, 2011.
- 5. Khoury, Richard, Harder, Douglas Wilhelm, "Numerical Methods and Modelling for Engineering", Springer International Publishing, 2016.

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2022 - 2023 (R 2019)	
FINAL YEAR BACHELOR	COURSE NAME	Financial Management	
OF TECHNOLOGY	COURSE CODE	CV422	
	COURSE CREDITS	4	
RELEASED DATE : 01/06/2020	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
3	2	30	40	30	-	50	150

PRE-REQUISITE : CV311: Project Management

COURSE OBJECTIVES:

CV421.CEO.1: To identify the Goals and Functions of Financial Management

CV421.CEO.2: To understand Financial Forecasting

CV421.CEO.3: To study working capital management

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV42.CO.1: Understand the basic of economic and financial management

CV42.CO.2: Solve the issues of financial management in business operations

CV42.CO.3: Apply the principles of financial analysis, financial decisions, investment decisions to construction industry

CV42.CO.4: Employ working capital management in Indian construction industry with supply chain inventory management

UNIT 1 **Introduction to Financial Management**

Review of engineering economics, elements of engineering economics, Time value of money, goals, objectives and principles of economic analysis, methods of economic analysis, necessity and importance of cash flows, ESCROW Account, Concept of project for major purchases.

UNIT 2 **Financial Forecasting**

THEORY COURSE CONTENT

Introduction, Basic tools: random variables, hypothesis tests, regression, time series. Smoothing and filtering: Simple exponential filters, trends and seasonality with filters.

UNIT 3 **Financial Analysis**

Introduction to financial analysis, Objectives and Limitations of Financial analysis. analysis of financial decisions, analysis of investment decision, Analysis of Operating Decision, Profitability Analysis, Returns and Liquidity.

UNIT 4 Working Capital Management

Nature and Scope of working capital, Factors determining working capital, estimating working capital, components of working capital. Inventory management, receivable management, working capital financing for Indian industry

UNIT 5 Supply Chain Management

Building blocks of a supply chain network. Business processes in supply chains. Types of supply chains. Strategic, tactical, and operational decisions in supply chains. Supply chain performance measures. Supply chain inventory management. Performance modeling of supply chains.

UNIT 6 **Risk Management**

Introduction, Types and Sources of Risk in Capital Budgeting, Risk Adjusted Discount Rate, Certainty Equivalent Approach, Probability Distribution Approach, Sensitivity Analysis, Simulation Analysis, Decision Tree Approach.

6 HOURS

6 HOURS

6 HOURS

Rev. Date: 01/07/2019

6 HOURS

6 HOURS

6 HOURS

PRACTICAL Project should be performed in group of 5 students

PRACTICAL NO.01 Title

14HOURS

Consider a financial management of typical construction industry or construction project. For that starting from planning stage to end of project, prepare detail report comprising of cash ow management, sources of funding, working capital management, profit and loss accounts, balance sheets, Income tax, GST and other necessary factors etc.

TEXT BOOKS:

- Khan M. Y. , Jain P. K. Financial Management McGrawHill, ISBN-13: 978-9339213053 Laxmi Publications (P) Ltd. 2010. ISBN-13: 978-817491208
 C., Subramanian T. "Financial Management New Age International publishers, ISBN-13: 978-8122425734
- 2. Pandey I. M. "Financial Management", Vikas Publishing House, ISBN-13: 978-9325982291

- 1. Goyal V. K. Financial Accounting2012, Prentice Hall Publications
- 2. Indian Institute of Banking and Finance (IIBF) Risk Management MacMillan Publishers India, ISBN-13: 978-9387914544
- 3. Chopra S., Meindl P. and Kalra D. V. Supply Chain Management2016, Pearson Education India, ISBN-13: 978-9332548237

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)		
FINAL YEAR BACHELOR	COURSE NAME	Environmental Impact Assessment and Climate Change		
	COURSE CODE	CV423		
	COURSE CREDITS	4		
RELEASE DATE : 01/07/2022	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	2	35	35	30	50	NIL	150

PRE-REQUISITE:

COURSE OBJECTIVES:

CV423.CEO.1: To identify the need to appraise and estimate the impact on environment.

CV423.CEO.2: To understand the basic principles of environmental impact assessment.

CV423.CEO.3: To learn its different components and methods of documentation and monitoring.

CV423.CEO.4: To illustrate about climate system its changes and causes.

CV423.CEO.5: To impart knowledge about impacts, adaptation and mitigation of climate change.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV423.CO.1: Examine different environmental attributes and identify the environmental parameters

CV423.CO.2: Apply the different methodologies to predict and assess the impacts.

CV423.CO.3: Compile The Data and Formulate an ElA Report.

CV423.CO.4: : Understand The Climate System and Its Changes due to Human Activities.

CV423.CO.5: Identify The Effects of Climate Change and Adopt Probable Techniques to Deal with Climate Change.

THEORY

UNIT 1 Introduction

Concepts of Environment its components, Environmental Imbalances, Definitions and Concepts of EIA, Types and Principles of EIA, Rationale and Historical Development of EIA, Role of EIA- As an Integral Part of the Planning Process, Concepts of Environmental Impact Statement (EIS), Organizational Structure, Status of EIA in India, Environmental legislations in India, Rapid and Comprehensive EIA.

UNIT 2	EIA Legislation
	DIT Degistation

Detailed Contents of EIA Introduction, Project Description, Anticipated Environmental Impacts and Mitigation Measures: Analysis of Alternatives; Environmental Monitoring Programme, Additional studies, Project Benefits; Environmental Cost Benefit Analysis, Legislative and environmental clearance procedures in India, siting criteria, coastal regulation zone (CRZ).

UNIT 3 EIA Process and Methods

Category of projects Form-1 and Form-1A for EIA clearance EIA Methodologies Screening Scoping checklist matrix network and overlay methodologies for impact identification, EIS format baseline description of affected environment Terms of reference (TOR) Evaluation and mitigation air noise water environment, assessment of socio-economic impacts assessment of ecological impact public participation and involvement techniques for conflict management and dispute resolution. Self-Study EIA case studies for selected projects.

UNIT 4 Environmental Audit, Management and Monitoring

Environmental audit- Definitions and Concepts, Partial Audit, Compliance Audit, Methodologies and Regulations, Qualities of Environmental Auditor, Content of EA Report, Introduction to ISO and ISO 14000, Environmental Management Techniques and Environmental Monitoring Plan.

UNIT 5 Earth's Climate System, Changes and Causes

Introduction to hydro-meteorological parameters, weather and climate, causes of climate change, climatic fluctuations and climate change The Earth's Climate Machine – Climate Classification - Global Wind Systems, The Hydrological Cycle – Global Ocean Circulation: El Nino and La Nina and its Effect - Solar Radiation: The Earth's Natural Green House Effect, Observation of Climate Change: Changes in patterns of temperature, precipitation and sea level rise, Observed effects of Climate Changes, Drivers of Climate Change, The Montreal Protocol, UNFCCC – IPCC – Evidences of Changes in Climate and Environment : on a Global Scale and in India : climate change modeling.

UNIT 6 Climate change Impact, Adaptation and Mitigation Measures

Impacts: Impacts of Climate Change on various sectors, Uncertainties in the Projected Impacts of Climate Change and Risk of Irreversible Changes. Adaptation: Adaptation Strategy/Options in various sectors including coastal zones, Key Mitigation Technologies and Practices, Energy Supply, Carbon sequestration, Carbon capture and storage (CCS). Clean Technology: Clean Development Mechanism: Carbon Trading - examples of future Clean Technology like Biodiesel, Natural Compost, Eco- Friendly Plastic Usage, Alternate Energy like Hydrogen, Bio-fuels, Solar Energy, Wind Energy, Hydroelectric Power, India's Climate Change Mitigation and Adaptive Funding.

7 HOURS

8 HOURS

6 HOURS

6 HOURS

6 HOURS

6 HOURS

PRACTICALS	/PROJECT:				
PRACTICAL.1	EIA STUDY	6 HOURS			
To study the im tor/Hydroelectric	pacts of any two developmental projects (Mining/industries/Traproject) by: Checklist method Ad-hoc method Matrix method	ansport sec-			
PRACTICAL .	2 EIA STUDY	8 HOURS			
To study baseline (Mining/industries	data collection for EIA. To study the EMP of any two developments/Transport sector/Hydroelectric project).	ntal projects.			
PRACTICAL .	3 SITE VISIT (Any One)	4 HOURS			
visit a nearby indu- and submit a repo- mentioned site and site map, process f	istry and submit a report on screening process conducted. Visit a consort on the possible constriction phase impacts on different attributes a prepare a detailed report on it including the information about site, phase diagram, different treatment / disposal methods etc.	Visit to the photographs,			
PROJECT					
Important Instruc	tions:				
PROJECT 1	Study of Environmental sensitive places of respective areas	4 HOURS			
Identify the enviro sures for human i	onmental sensitive places, conduct a survey and suggest suitable mit mpact on natural ecosystem. Prepare a detailed report and presen	igation mea- tation on it.			
PROJECT 2	Site Visit for Climate Change	2 HOURS			
Visit to IITM Cen from IMD and Ex School, NOAA, IM	tre and IMD for Climate Change Prepare Analysis of historical instru- plain importance of Extraction of climatic data from repositories like ID, etc. in climate change study. Prepare a draft a detailed report o	ımental data e Earth Null, n it.			
PROJECT 3	Awareness Programs: Mitigation measures of any area spe- cific project (Any One)	4 HOURS			
Suggest suitable m survey to a nearby (w.r.t. Air, Noise,	itigation measures for urban / rural solid waste management problem residential complex/apartment and submit a report on facility procee Waste Management, Water Utilization attributes)	s. Conduct a dure followed			
TEXT BOOK 1. Environment	cal Impact Assessment Methodologies, authored by Y. Anjaneyulu a	nd Valli Man			

- 2. Barry R.G. and Chorley R.L. (1992)' "Atmosphere, Weather and climate"' 4th Edition, ELBS Publication.
- 3. Environmental Science and Engineering by J. Glynn and Garry W. Hein Ke, Prentice Hall Publishers

- 1. Dash Sushil Kumar, "Climate (Change An Indian Perspective", Cambridge University Press India Pvt. Ltd, 20077.
- 2. Canter, L.W., Environmental Impact Assessment, McGraw Hill, New York, 1996.
- 3. Petts, J., Handbook of Environmental Impact Assessment Vol. I and II, Blackwell Science, London 1999.
- 4. Cauter R.L. Environmental Impact Assessment, Mc Graw Hill International Edition, 1997.
- Environmental Impact Assessment: A Guide to Best Professional Practices' Edited by Charles H. Eccles ton, CRC Press, 2011 (ISBN 978-1-4398-2873-1).

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)		
FINAL YEAR BACHELOR	COURSE NAME	SDC-4 Computational Fluid Dynamics		
	COURSE CODE	CV435		
	COURSE CREDITS	02		
RELEASE DATE : 01/07/2022	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOURS/WEEK)		THEORY			PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
00	04	00	00	00	50	25	75

 $\label{eq:pre-regulation} \textbf{PRE-REQUISITE:} Mechanics of Fluids$

COURSE OBJECTIVES:

CV433..CEO.1: To introduce Computational Fluid Dynamics (CFD)

CV433..CEO.2: To explain CFD workflow or steps involved in CFD analysis

CV433..CEO.3: To prepare CAD model and mesh generation in CFD

CV433..CEO.4: To simulate and explain Post-processing aspects in CFD

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV433.CO.1: prepare CFD-specific CAD models

CV433.CO.2: prepare quality CFD simulation meshes from imported CAD geometry

CV433.CO.3: select the appropriate boundary conditions for CFD simulation

CV433.CO.4: analyze the solution of a CFD simulation

CV433.CO.5: interpret the results by qualitative and quantitative post-processing

PRACTICALS/PROJECT:								
PRACTICAL.1	Introduction to Computational fluid dynamics	04 HOURS						
Introduction of CFD CFD, an overview of Assignment 1: GUI of	Introduction of CFD analysis process flow, Introduction of various software, an overview of ICEM CFD, an overview of ANSYS CFX, Interfacing of different software of ANSYS Suite. Assignment 1: GUI operations of ICEM CFD and ANSYS CFX.							
PRACTICAL .2	Geometry modeling in ICEM CFD	08 HOURS						
Introduction of ICEM CFD, Understanding GUI of ICEM CFD, Creation of geometry with defining points, curves, surfaces, and bodies, Repair of geometry, Restoring of dormant entities. Assignment 2 :Geometry creation of Close conduit and open channel.								
PRACTICAL .3	08 HOURS							
Mesh types, Mesh set mesh types, and met dence study. Assignment:3 Mesh g	Mesh types, Mesh setups (global, part, surface, curve), Prism meshing parameters, Different volume mesh types, and methods, Mesh quality, Mesh quality improvement, Mesh output, Mesh indepen- dence study. Assignment:3 Mesh generation of Close conduit and open channel geometries.							
PRACTICAL .4	CFD Analysis process in ANSYS CFX	06 HOURS						
Structure of ANSYS Boundary conditions schemes, Timestep, of interpretation of resu Assignment 4: CFD	CFX, Preprocessing -The extent of domain, Geometry generation, Steady-state, and transient analysis, Processing -Solver contro- Convergence criteria, Sources of error, transient simulation, Pos- lits (Qualitative as well as quantitative both). analysis of one sample problem showcasing the above learning.	tion, Meshing, ols, Advection t-processing –						
PRACTICAL .5	CFD Analysis for pipe flow using ANSYS CFX	04 HOURS						
MImporting geometr solver controls, Runn Assignment 5: CFD a including conclusion	y in CFX Pre, assigning a type of flow, fluid materials, boundating the solver, and interpretation of results. Analysis of close conduit (Laminar and Turbulent) with interpretation and report submission.	ary conditions,						
PRACTICAL .6	CFD Analysis for Open channel Flow (OCF) using CFX	06 HOURS						
Importing geometry in CFX Pre, assigning a type of flow, fluid materials, boundary conditions, solver controls, Running the solver, and Interpretation of results. Assignment 6: CFD analysis of Open channel flow (OCF) with Interpretation of results including conclusion and report submission.								
PRACTICAL .7	Project Work	04 HOURS						
Students will be given in Civil Engineering. calculation values.	n the Project Topic / Case Study related to preferably Fluid Flo The results from the simulation would be compared with liter	w applications ature or hand						

- 1. John D Anderson Jr. (1995), "Computational fluid dynamics The basics with application", International edition, McGraw Hill Inc., ISBN 0-07-113210-4
- H K Versteeg and W Malalasekera. (2008), "An Introduction to Computational Fluid Dynamics", 2nd Ed., Pearson Education, ISBN-13: 978-8131720486.
- Joel H. Ferziger, Milovan Perić, Robert L. Street, "Computational Methods for Fluid Dynamics", Springer Publication, ISBN-13: 978-3319996912.

- 1. ICEM CFD, User's Guide 2019, by ANSYS Ltd.
- 2. ANSYS CFX user's Guide 2019, by ANSYS Ltd.

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)		
FINAL YEAR BACHELOR	COURSE NAME	Skill Development Course 4 - QGIS		
	COURSE CODE	CV436		
	COURSE CREDITS	02		
RELEASE DATE : 01/07/2022	REVISION NO	1.0		

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY			PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
00	04	00	00	00	50	25	75

$\mathbf{PRE}\text{-}\mathbf{REQUISITE:}\operatorname{NIL}$

COURSE OBJECTIVES:

CV434..CEO.1: To Learn and get familiar with QGIS Interface.

CV434..CEO.2: To describe concept and technique in GIS modeling.

CV434..CEO.3: To demonstrate competency with the QGIS software and enhance and interpret data

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV434.CO.1: Use GIS to identify, explore, understand, and solve spatial problems

CV434.CO.2: Demonstrate GIS modeling skills

CV434.CO.3: Design and implement a GIS project

CV434.CO.4: Formulate applications of GIS technology.

PRACTICALS/PROJECT: Project should be performed individually							
PRACTICAL.1	Introduction to QGIS / Basics of QGIS	04 HOURS					
Getting familiar with QGIS Browser Data	a QGIS Interface QGIS Configuration General tools Working was Sources Importing CAD Data	ith projections					
PRACTICAL .2	Vector Data Management	06 HOURS					
Introduction Vector Working with tables with vector data and	Introduction Vector and alphanumeric data visualization Editing data Working with Vector Data Working with tables Export Vector data in HECRAS, MIKE software Practical Exercise: Working with vector data and tables, operations with vector and alphanumeric data.						
PRACTICAL .3	Working with Raster Data	06 HOURS					
Introduction Displa Practical Exercise: V	y Raster data Raster calculator Working with Images Vorking with raster data and operations with Images.						
PRACTICAL .4	Working with Terrain Data	06 HOURS					
Introduction Project Georeferencing Topo Elevation Model (DI Practical Exercise: C	tions and Coordinate Systems (Geographic and Projection Coord osheets and scanned maps Downloading Contour Data – Creat EM), Hillshade, Slope, and Aspect. Georeferencing of Toposheet – DEM data.	linate System) tion of Digital					
PRACTICAL .5	Create Maps and 3D Visualization	04 HOURS					
Creation tools Grap to 3D data	blic elements Atlases generation Graphic output creations Co	nvert 2D data					
PRACTICAL .6	Spatial Analysis using Raster Data Hydrological Study	06 HOURS					
Delineation of Water Catchment Areas Pr develop a stream net	shed Area, Drainage Networks, Flow Direction, Watershed basi actical exercise: To delineate watershed using Digital Elevation M work for the delineated watershed.	ins/Sub-basins fodel data and					
PRACTICAL .7	Calculation of Normalized Difference Vegetation In- dex(NDVI)	04 HOURS					
To perform Normaliz	zed Difference Vegetation Index (NDVI) analysis for the delineat	ed watershed.					
PROJECT.1 Ca	PROJECT.1 Calculating Areal Mean Rainfall 06 HOUR						
For the delineated w itation or Areal Mea Areal Mean Rainfall	For the delineated watershed area for runoff forecasting the average depth of rainfall (Areal Precip- itation or Areal Mean Rainfall (AMR)) in a hydrological basin is required as an input. Calculate Areal Mean Rainfall using the Thiessen Polygon method.						
PROJECT.2 Ca	lculating Street Intersection Density	04 HOURS					
With the availability of global street network dataset from Open Street Map and QGIS, calculate and visualize intersection density for any region of the world.							

- 1. Kurt Menke, "Discover QGIS 3.x A Workbook for Classroom or Independent Study", Locate Press, ISBN (Print) 978-0998547763, ISBN (PDF) 978-1734464337, Published 2019-04-29.
- Hans van der Kwast and Kurt Menke, "QGIS for Hydrological Applications", Locate Press, ISBN (Print) 978-0998547787, ISBN (PDF) 978-1734464320, Published 2019-09-19.
- 3. M. Anji Reddy, "Remote Sensing and Geographical Information System", BS Publication, Fourth Edition, ISBN: 978-93-81075-97-5.

REFERENCE BOOK

1. QGIS Desktop 3.16 User Guide.

(An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS			
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	AY: 2022 - 2023(R2019)		
FINAL YEAR BACHELOR	COURSE NAME	Project Evaluation		
	COURSE CODE	CV470		
	COURSE CREDITS	4		
RELEASE DATE : 01/07/2022	REVISION NO	1.0		

TEACHIN	G SCHEME		EXA	MINAT	TION SCHEMI	E AND MARKS	
(HOUR	S/WEEK)	THEORY			PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
NIL	8	NIL	NIL	NIL	NIL	150	150

COURSE OBJECTIVES:

CV470.CEO.1: To understand how to carry out performance evaluation and comparative analysis in appropriate form.

CV470.CEO.2: To know about standard industry practices.

CV470.CEO.3: To become familiar with the steps involved in identifying and selecting a good platform to present the work done.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV470.CO.1: Interpret findings, compare them with results in the literature, identify weaknesses and limitations, and propose improvements.

CV470.CO.2: Make use of standard industry practices.

CV470.CO.3: Decide appropriate platform for presenting the work done.

COURSE ABSTRACT

The project is most important part of undergraduate curriculum and enables students to develop an alytical, critical thinking, problem solving, and communication, cooperation, leadership skills. Project enable students to assimilate their learning to address a real-world interdisciplinary problems. The objective of undergraduate project is to analyze, design, implement, compelling solution to real world problems, and do performance evaluation with relevant documentation.

To enhance the effectiveness and achieve worthwhile outcome of engineering knowledge that the student has acquired, the entire project process is divided in three phases, viz., Project Design, Project Implementation and Project Evaluation.

After successful completion of project implementation (Sem VI), next step is project evaluation (Sem VII). The goal of this phase of the project is to draw Inferences and Detail Analysis/Final Testing/Re-development/etc. Showcasing the work - Technical documentation in Conferences/Journal/Patent/Product/Working model.

GUIDELINES

- 1. Project group students of Sem VI would be continued in this semester VII.
- 2. The group members may be from different programs to support the interdisciplinary functioning.
- 3. Projects should preferably have a national/international, industry/academic/research collaboration.
- 4. Students should do extended implementation of their project in consultation with their advisor.
- 5. For extended implementation, objectives of Sem V and Sem VI should have been already achieved.
- 6. Every project should follow at least one standard industry practice while implementing. For example, below are some of the standard industry practices followed by Electrical engineers:
 - (a) If writing a Matlab code, follow MathWorks Advisory Board (MAB) Guidelines
 - (b) For embedded c coding, Motor Industry Software Reliability Association (MISRA) standards can be used
 - (c) If antenna is manufactured, then get **EMI/EMC** testing certificate from National Accreditation Board for Testing and Calibration Laboratories.
- 7. Performance evaluation and Comparative analysis of results should be carried out and presented in appropriate form.
- 8. Carry out detail analysis to improve performance w.r.t Final Testing/Re-development/etc.
- 9. Showcase the work in Conferences/Journal/Patent/Product/Working model.

Note: For guideline 6, every school should identify standard industry practices and try to incorporate in the projects.

ASSESSMENT and EVALUATION

The three member jury/committee will be appointed to monitor the progress and continuous evaluation of each project. One of the member will be the project guide. Assessment shall be done jointly by the guide and jury members.

- 1. Project Review I (Internal): (20 Marks)
- 2. Activity (Standard industry practices): (20 Marks)
- 3. Project Review II (External): (20 Marks)
- 4. Project Report: (20 Marks)
- 5. Every project group should publish paper in National conference / International conference / Participate in technical project competition (with achievement) / File a patent/etc.: (20 Marks)
- 6. Project: Final Presentation and Demonstration (External) (50 Marks)

Note:

- Report should be prepared in IAT_EX .
- External examiner for Review 2 and Final Demo should be allocated same group.
- Report will be jointly evaluated by External examiner and Internal examiner.

REFERENCES

- 1. Eng-Choon Leong et al, "Guide To Research Projects For Engineering Students", CRC press, Apple Academic Press Inc. ISBN: 9781482238778, 9781482238778.
- 2. Michelle Reid, "Report Writing (Pocket Study Skills)", Second Edition, Macmillan Education.
- 3. Leslie Lamport, "A Document Preparation System ${\rm IAT}_{\rm E}{\rm X}$: User's Guide and Reference Manual", Pearson, 2011.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECHANICAL AND CIVIL ENGINEERING	W.E.F	2021 - 2022 (Rev. 2019)
FINAL YEAR BACHELOR	COURSE NAME	Student Internship Program (Technical/ Research Skills)
	COURSE CODE	CV400
	COURSE CREDITS	4
RELEASE DATE : 01/07/2021	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
NIL	NIL	NIL	NIL	NIL	NIL	150	150

$\mathbf{PRE}\text{-}\mathbf{REQUISITE:}\mathbf{NIL}$

COURSE OBJECTIVES:

CV400.CEO.1: To get acquainted with the professional organization structure

CV400.CEO.2: To enable students to apply their knowledge for development of product/system/software

CV400.CEO.3: To work individually as well as in groups

CV400.CEO.4: To get Hands-on experience in the related field

CV400.CEO.5: To formulate the engineering problem statement

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV400.CO.1: Analyze a given engineering problem

CV400.CO.2: Identify an appropriate problem solving methodology

- $\rm CV400.CO.3:$ Cultivate hands-on professional work experience prior to their graduation
- CV400.CO.4: Understand the real time technical, managerial and communication skills required at the job

CV400.CO.5: Develop appropriate workplace attitudes and understand the importance of ethics in professional life

INTRODUCTION:

The main aim of Student Internship Program (SIP) is to assist all Final Year B.Tech. students to obtain internships at various centers of excellence in the industry and the academia. The ultimate goal is to imbue students with professionalism and networking capabilities using internships as a tool for providing comprehensive practical experience. Using SIP, MITAoE students will enhance their academic and professional skills, making themselves more marketable in today's competitive world. The students can harness this lucrative opportunity to apply the knowledge they acquired all through the academic career in the professional realm.

SCOPE AND STRUCTURE OF SIP:

Summer Internship Program (SIP) is offered to entrants of Final Year B.Tech. (after semester VI) that meet the eligibility criteria stated below:

Final year B.TECH entrants should apply for 4 to 6 weeks duration internships during June-July of every academic year. For this internship, REGULAR credits will be awarded. (Credit Based Internship - 4 Credits). This internship is compulsory for all the entrants of final year B.TECH. Awarded credits will be considered for the calculation of final year CGPA and will be reflected in Regular Grade Card. Student has to work for 160 hours minimum as an Intern during the said period.

MITAoE will be responsible for identifying internship opportunities and assisting students to apply for such positions. However, any financial liability, including but not limited to travel, accomodation, insurance etc. incurred as direct or indirect consequence of such a position is the sole responsibility of the student and his/her guardians.

STUDENT ELIGIBILITY CRITERIA:

Students applying for internships must meet the following criteria:

After completion of sixth academic semester, Third Year B. Tech. students (Final Year B. Tech. entrants) of all schools are eligible to apply for 4 to 6 weeks duration internships under SIP. All students have to complete the internship successfully as stated in the scope of Student Internship Program. However, students who fail to earn the 4 credits for any reason, shall be required to earn the same at a later instant of time to be eligible for the award of degree as per the internship policy.

RULES FOR APPLICATION TO SIP:

Students applying to the Student Internship Program are required to adhere the following rules and need to go through SIP policy document:

1. Students must complete an undertaking to abide by the rules and regulations of the institution / industry for which they are applying for SIP.

2. Students must obtain academic and school clearances to ensure completion of prerequisite courses or other requirements as a part of their application to SIP.

3. Students must submit a well formatted CV, requisite form, financial declaration, if any, along with the undertaking stated above to the Internship Coordinator through Faculty Mentor before April 30 of every year.

4. Last date for completing all relevant formalities pertaining to SIP is 15 days prior to the start of the internship.

5. Within the first week of the internship, students are required to submit their supervisor's contact information to the Faculty Mentor and Internship Coordinator.

6. During the internship, students must submit brief fortnightly report duly signed by their supervisor to the Faculty Mentor.

7. Annexure IV is the final approval for the SIP and without which no internship is approved and no queries will be entertained at a later stage.

(An autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)
FINAL YEAR BACHELOR	COURSE NAME	Design of Hydraulic Structures
	COURSE CODE	CV406
	COURSE CREDITS	4
RELEASE DATE : 01/07/2022	REVISION NO	1.0

TEACHIN	G SCHEME		EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY		PRACTICAL	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION		
3	2	35	35	30	50	NIL	150	

PRE-REQUISITE: NIL

COURSE OBJECTIVES:

CV406..CEO.1: To get knowledge of various types of dam and its components

CV406..CEO.2: To describe advanced fluid mechanics principles.

CV406..CEO.3: To convey the knowledge on design criteria and stability analysis of different types of dams.

CV406..CEO.4: To apply the design concepts of hydraulic structures

CV406..CEO.5: To describe theories of structures on Pervious Foundations.

CV406..CEO.6: To design different Canal regulation works.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV406.CO.1: Perform the stability analysis of gravity dams.

CV406.CO.2: Explain the causes of failure of different types of dams and their design criteria

CV406.CO.3: : Design minor irrigation structures.

CV406.CO.4: Design minor irrigation structures.

CV406.CO.5: : Integrate relevant concept and methodologies in the area of hydraulics, water resources and geotechnical engineering.

THEORY		
UNIT 1	Reservoir Planning and Components of Dam Engineering	6 HOURS
Investigation voir, site ass Characterist	ns, Capacities, Zones of storage, Mass Inflow and Mass Demand curves, L sessment and selection of type of dam, Introductory perspectives, Embankme tics- Gravity dams and characteristics- Spillways and ancillary works.	ife of Reser- nt types and
UNIT 2	Embankment Dam	8 HOURS
Types, prin- sections, est circle metho	ciples of design, Material and construction, foundation requirements, typical imation of seepage through and below the dam, seepage control, stability of s od of analysis, pore pressures, sudden drawdown, steady seepage condition.	l earth dam lopes by slip
UNIT 3	Gravity Dam	8 HOURS
Concepts and dam, Concretion joints, O	nd design criteria, Loading, Gravity dam analysis, Stability, Elementary profi ete for dams, Roller Compacted Concrete gravity dams, Foundation treatmer Galleries in gravity dams. (Dam site visit is recommended)	le of gravity at, Construc-
UNIT 4	Dam outlets works	6 HOURS
Ogee spillwa spillways, C Spillway cre	ay and its design, Cavitation on spillway, design feature, Design principles at hute spillways, Principles of Energy dissipators based on jump height curves, st st gates, vertical lift and radial gates, their design principles.	nd Design of illing basins,
UNIT 5	Structures on Pervious Foundations	6 HOURS
Diversion he weir on per independent	ead works- layout and functions of components, Weir and Barrage- Causes meable soils, Bligh's theory, limitations, Design of vertical drop weir, Khosla variables, Khosla's corrections.	of failure of a's theory of
UNIT 6	Design of canal regulation structures	8 HOURS
BDesign of I type, Siphor lator and fu	Hydraulic Structures: Aqueduct (Type-III), siphon aqueduct (Type-III), Cana n well type, Sarda type (High Discharge only), Glacis fall and Cross regulator nctions. (Regulatory structures site visit is recommended)	falls - notch , Head regu-

PRACTICALS/P	ROJECT:	
PRACTICAL.1	Stability Analysis of Embankment Dam	12 HOURS
Students are suppose	ed to prepare a model, carry out the stability analysis and Submi	it the same.
PRACTICAL .2	Gravity Dam Analysis	12 HOURS
Students will be give and Submit the same	en the case studies. They are supposed to carry out complete los e.	ading analysis
PRACTICAL .3	Field Visit	6 HOURS
Eight and the Constitution	- Dawn / Frank and and Dawn	

Field visit to Gravity Dam / Embankment Dam.

TEXT BOOK

- 1. Modi, P. N., "Introduction to Water Resources and Waterpower Engineering", Standard Publication, Delhi, ISBN-13: 978-8174092304.
- Punmia B. C. Ashok K. Jain, Arun K. Jain, B. B. L. Pande, "Irrigation and Water Power Engineering", Laxmi Publications (P) Ltd. 2010. ISBN-13: 978-817491208
- 3. Garg, S.K., "Irrigation Engineering and Hydraulic Structures", Khanna Publishers, ISBN-13: 978-0070491342.
- 4. Arora, K.R., Irrigation, "Water Power and Water Resources Engineering", Standard Publishers Distributors, Delhi, ISBN-10: 007041870.

- 1. Asawa, G, L "Irrigation and Water Resources Engineering", New Age Int. Ltd. ISBN-13: 978-8189401351.
- Sathyanarayana M. C. "Water Resources Engineering-Principles and Practice", New Age International ISBN-13: 978-8189401351.
- 3. Varshney, R. S. Theory Design of Irrigation Structures Vol III, Nem Chand Bros., Roorkee, ISBN-13: 978-8189401351.
- P. Novak, A. I. B. Moffat, C. Nalluri and R. Narayanan, Taylor and Francis, U. K., "Hydraulic Structures", ISBN-13: 978-8189401351.
- 5. Manual on Barrages and Weirs on Permeable Foundation, Publication 179, (Volumes I and II), Central Board of Irrigation and Power, New Delhi.

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)
FINAL YEAR BACHELOR	COURSE NAME	FOUNDATION ENGINEERING
	COURSE CODE	CV475
	COURSE CREDITS	3
RELEASE DATE : 01/07/2022	REVISION NO	1.0

TEACHIN	G SCHEME		EXAMINATION SCHEME AND MARKS				
(HOUR	S/WEEK)		THEORY		PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	NIL	35	35	30	NIL	NIL	100

PRE-REQUISITE: Geotechnical Engineering

COURSE OBJECTIVES:

CV475.CEO.1: To have knowledge about exploration of soil

CV475.CEO.2: To acquire the capacity to design both shallow and deep foundations.

CV475.CEO.3: To have adequate knowledge about foundation on problematic soil and applications of Geosynthetics

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV475.CO.1: adopt suitable soil exploration technique and interpretation of related data.

CV475.CO.2: design both shallow and deep foundation

CV475.CO.3: solve the engineering behaviour of expansive soils and selection of suitable foundation.

CV475.CO.4: selection of geosynthetic materials and its application in foundation problems.

THEORY

UNIT 1 Soil Properties and Exploration

Soil properties and its applications, Soil exploration techniques comparisons, Sounding tests, Geophysical methods, Sampling, Interpretation of Laboratory and field Testing.

UNIT 2 **Shallow Foundation**

Bearing capacity of soil Basic definitions Bearing capacity theories Types of shear failure Effect of water table Bearing capacity from plate load test. Shallow foundation- Types and Applications, Floating foundation, IS-6403-1981 code method - Rectangular and Circular Footing, Settlement of Foundations. Case Study- Practices in foundation engineering in India

UNIT 3 **Deep Foundations**

Load transfer mechanism, types of piles and their function, factors influencing election of pile, their method of installation and their load carrying characteristics for cohesive and granular soils, piles subjected to vertical loads- pile load carrying capacity from static formula, dynamic formulae (ENR and Hiley), penetration test data Pile load test (IS 2911). Pile group: carrying capacity, efficiency and settlement. Negative skin friction. Well foundation: components, sand island method. Case Study-Failure of deep foundation due to unexpected subsurface structure

UNIT 4 Foundations on problematic soil and Introduction to Geosynthetics 9 HOURS

Identification of expansive soils, Swell potential and swelling pressure, Active depth, Foundation Problems, Foundation practices in expansive soils, Soil Replacement and 'CNS' concepts. Geotextiles, various methods of foundations design, Technological consideration in Geotechnical Engineering. Case Study- Challenges due to problematic soils Case Study- Rectification of Damaged Structures on Expansive Soil Deposits

9 HOURS

9 HOURS

9 HOURS

- 1. Donald P. Coduto, Foundation Design: Principles and Practices, Prentice Hall 2 edition (July 20, 2000) ISBN-10: 0135897068.
- Dr. K.R. Arora, "Soil Mechanics and Foundation Engineering", (8th Edition) 2015, Standard Publishers, ISBN:81-8014-112-8
- 3. Gopal Ranjan and A. S. Rao, Basic and Applied Soil Mechanics, G. K. Publications Pvt. Ltd, Dec. 2006, ISBN : 978-81-224-1223-9 .
- 4. V. N. S. Murthy, Soil Mechanics and Foundation Engineering, B. S. Publications, Dec 2009, ISBN 0 324 06680 5.

- 1. Braja M. Das, Principles of Foundation Engineering, Cengage India Private Limited, Eighth edition (1 August 2017), ISBN-10: 9386650959
- 2. Joseph E. Bowles, Foundation Analysis and Design, Fifth Edition ISBN 0-07-912247-7
- Palanikumar. M, Soil Mechanics, PHI Learning Private Limited, 2013, ISBN: 978-81-203-4838-7.
- 4. R. F. Craig "Craigs Soil Mechanics", E and FN Spon an imprint of Chapman and Hall, 2012, ISBN: 0-415-32702-4, 0-415-32703-2

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)
FINAL YEAR BACHELOR	COURSE NAME	Geospatial Tools and Techniques
	COURSE CODE	CV476
	COURSE CREDITS	3
RELEASE DATE : 01/07/2022	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)		THEORY		PRACTICAL	PRESENTATION/	TOTAL
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	NIL	35	35	30	NIL	NIL	100

PRE-REQUISITE: Surveying and Geospatial Engineering

COURSE OBJECTIVES:

CV476.CEO.1: To understand the basics of Geodetic Surveying

CV476.CEO.2: To learn how to perform Hydrographic Surveying using Nautical Sextant

CV476.CEO.3: To know relevance of Heavenly Bodies.

CV476.CEO.4: To prepare plans of an area by aerial Photogrammetry

CV476.CEO.5: To comprehend fundamentals and principles of techniques

CV476.CEO.6: To utilize the concept of SBPS in detail

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV476.CO.1: Explain the concept of Geodetic Surveying for fixing the ground control points.

CV476.CO.2: Apply knowledge of Hydrographic Surveying to identify points solve problems

CV476.CO.3: Utilize the concepts of astronomical surveying

CV476.CO.4: Apply the concepts of hydrographic surveying

CV476.CO.5: Analyse the knowledge of remote sensing and sensor characteristics.

CV476.CO.6: Distinguish working of various spaces-based positioning systems

	-	
UNIT 1	Geodetic Surveying	6 HOURS
Introductic Surveying, Axis signal observatior	on to Plane and Geodetic Surveying, Geodetic surveying- Objects, Methods Trigonometric Levelling, Terrestrial refraction, Corrections for curvature an correction, Determination of difference in elevation by single observation and as.	of Geodetic d refraction, nd reciprocal
UNIT 2	Hydrographic Surveying	7 HOURS
Objects, A soundings, solution of	pplications, Establishing controls, Sounding, Sounding Equipments, Method Reduction of soundings, Nautical Sextant and its use, Three point problem three point problem, Tides and tide gauges.	s of locating and its use,
UNIT 3	Field Astronomy	7 HOURS
Introduction Spherical T measuring of Conversion	n. Definitions of Astronomical Terms, Coordinate Systems, Spherical Trigor Triangle, Relationship between Coordinates, The Earth and The Sun, Various Time, Interconversion of Time- Relation between Degrees and Hours of Time ion of Local Time to Standard Time and vice versa.	nometry and s systems for e, Conversion
UNIT 4	Aerial Photogrammetry	7 HOURS
Objects, C	lassification, comparison of map and aerial photograph, Vertical, Tilted and	Obligue pha
tographs, \$ Flight plan photogram	Scale of and Relief displacement in vertical photograph, Ground control pointing, Introduction to digital photogrammetry, different stereo viewing technique metry, Different products of digital photogrammetry, Drones in aerial surveying	ints (GCPs), ues in digital g.
tographs, f Flight plan photogram UNIT 5	Scale of and Relief displacement in vertical photograph, Ground control pointing, Introduction to digital photogrammetry, different stereo viewing technique metry, Different products of digital photogrammetry, Drones in aerial surveying Remote Sensing	ints (GCPs), ues in digital g. 6 HOURS
tographs, f Flight plan photogram UNIT 5 Definition Satellites a resource sa introductio ital image. resolution a	Scale of and Relief displacement in vertical photograph, Ground control poining, Introduction to digital photogrammetry, different stereo viewing techniquemetry, Different products of digital photogrammetry, Drones in aerial surveying Remote Sensing and scope, history and development of remote sensing technology, Types of Remote their characteristics, types of sensors, orbital and sensor characteristics of tellites, sensor classification, applications of sensor, Indian remote sensing satellisen to various open-source satellite data portals, concept of Swath and Nadir, resultion to spatial resolution, spectral resolution, radiometric resolution and image interpretation.	6 HOURS mote Sensing major earth ite programs, olutions, dig- and temporal
tographs, f Flight plan photogram UNIT 5 Definition a Satellites a resource sa introductio ital image. resolution a UNIT 6	Scale of and Relief displacement in vertical photograph, Ground control poining, Introduction to digital photogrammetry, different stereo viewing techniquemetry, Different products of digital photogrammetry, Drones in aerial surveying Remote Sensing and scope, history and development of remote sensing technology, Types of Remote their characteristics, types of sensors, orbital and sensor characteristics of tellites, sensor classification, applications of sensor, Indian remote sensing satellisen to various open-source satellite data portals, concept of Swath and Nadir, resulting interpretation. Space Based Positioning System	6 HOURS mote Sensing major earth ite programs, olutions, dig- and temporal 7 HOURS
TEXT BOOK

- 1. N. N. Basak, "Surveying and Levelling", Tata Mc-Graw Hill
- 2. R Subramanian, "Surveying Levelling", Oxford University Press, 2013 2nd Revised edition. Revised.
- 3. Dr. B. C. Punmia, Ashok Kumar Jain, A.K. Jain "Surveying Vol. I and II", Laxmi Publication 2005 Edition
- 4. T. P. Kanetkar and S. V. Kulkarni, "Surveying and Levelling Vol. II", Pune Vidyarthi Publication
- 5. Dr. K. R. Arora, "Surveying Vol. I and II", Standard Book House.

REFERENCE BOOK

- 1. M. Chandra and S. K. Ghosh, "Remote sensing and Geographical Information System", Narosa Publishing House, 2006 Edition
- 2. Alfred Leick, "GPS Satellite Surveying", Wiley Publishers, 2003 3rd Revised ed.
- 3. M.D. Saikia, "Surveying", PHI Learning Pvt . Ltd, 2010 Edition.

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)	
FINAL YEAR BACHELOR	COURSE NAME	Air and Noise Pollution and Control Measure	
	COURSE CODE	CV477	
	COURSE CREDITS	02	
RELEASE DATE : 01/07/2022	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY		PRACTICAL	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	-	35	35	30	-	-	100

$\mathbf{PRE}\text{-}\mathbf{REQUISITE:}\operatorname{NIL}$

COURSE OBJECTIVES:

CV477..CEO.1: To study various metrological parameters affecting air pollution.

CV477..CEO.2: To understand the plume behavior and study dispersion modeling for atmospheric stability conditions. on the environment.

CV477..CEO.3: To know about air pollution controlling device and understand the effects of pollutants

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV477.CO.1: Explain the Details About Source, Types and Impacts of Air Pollution.

CV477.CO.2: Understand Meteorological Aspects of Air Pollution

CV477.CO.3: Identify Sampling and Analysis Techniques for Air Quality Assessment.

CV477.CO.4: Illustrate The Various Air Pollution Control Measures.

CV477.CO.5: Summarize Various Polices Related to Air Pollution Prevention and Control

CV477.CO.6: Understand Noise Pollution Control Methods.

THEORY	ζ					
UNIT 1	Introduction	6 HOURS				
Definition, Types of pollution, Indoor and Outdoor Air Pollution, Sources and classification of Air Pollutants, Effects of air pollution on health, vegetation materials, Economic effects of air pollution, Units of measurements of pollutants, Air quality criteria, Emission Standards, National Ambient Air Quality Standards (NAAQS) 2009. Self-Study: Global Effects of Air Pollution: Greenhouse Effect, Acid Rain, Smog and Photochemical Smog, Ozone Depletion						
UNIT 2	METEOROLOGICAL ASPECTS	8 HOURS				
Scales of metrology, Meteorological Aspects of Air Pollution Dispersion, Temperature Lapse Rate, Plume behavior, Wind and Pollution Rose Diagram, Maximum mixing depth (MMD), Dispersion Modeling: Introduction to Dispersion Modeling, Its Applications and Limitations. Introduction to Gaussian Plume Model, Stack Height and Dispersion. Self-Study: Zones of atmosphere. Site visit to Industry or Indian Institute of Tropical Meteorology (IIMT) Pune is recommended.						
UNIT 3	AMBIENT AIR SAMPLING AND MONITORING	6 HOURS				
Basis and s particulates CPCB, Am itational Se Electrostat: UNIT 4 Absorption Adsorbents System-Con Condensers Performance	tatistical consideration of sampling sites, Devices and methods used for sampli s, Isokinetic sampling, Ambient air quality monitoring as per the procedure l abient air sampling, stack sampling. Control devices for particulate contamin ettling Chambers, Cyclone Separators, Wet Collectors, Fabric Filters (Bag-H ic Precipitators (ESP), Air Pollution Indices. Site visit to Industry is recomme Gaseous Pollutant Control : Principles, Description of Equipment-Packed and Plate Columns, Adsorptic , Equipment Descriptions, Pressure Swing Adsorption, Adsorption Cycle-Solve ntinuous Rotary Bed-Fluidized Bed. Condensation: Contact Condensers-She s. Incineration: Hydrocarbon Incineration Kinetics, Equipment Description, ce Equations	ng gases and aid down by nants: Grav- iouse Filter), ended. 6 HOURS on: Principal ent Recovery ell and Tube Design and				
UNIT 5	Legislation And Regulation for Industrial and Automobiles Pollu- tion	6 HOURS				
Air pollutic Emission S Based Con Plants, Fer Air prevent Carbon Cre	on due to automobiles, Standards and Control Methods, Indian specifications, I standards, Motor Vehicle Act 1988. Industry Application: Control method trol Mechanisms – Mineral, Asphaltic Concrete, Cement Plants, Glass M tilizers, Pharmaceuticals and Wood Processing Industry, Power Plants, Const tion and control of pollution Act 1981, The Environment (Protection) Act, 1986 edit, Green Bench, Carbon Sequestration, Carbon Footprints.	 3harat Stage ls- Processes anufacturing ruction Site. Self-Study: 				
UNIT 6	NOISE POLLUTION AND CONTROL	8 HOURS				
Noise: Defi Acts. Nois	nition, Characteristics, Sources, Types of noise, Impact of noise, Permissible e measuring equipment: Sound Level Meter, Octave Band Analyzer, Statisti	limits, Noise cal Analyzer				

and Noise Average Meter Enclosures and Barriers.

TEXT BOOK

- 1. 'Air pollution and control', C.S. Rao, New age international publication, ISBN: 812241835X, 9788122418354
- Air Pollution', Rao M.N. and Rao H.V.N., Tata McGraw Hill Publishing Company Ltd., ISBN 10: 0074518712
- 'Advanced Air and Noise Pollution Control', Wang L.K., Pereira N.C., Hung Y.T., Volume I and II, Humana Press, ISBN 1-58829-359-9

REFERENCE BOOK

- 1. Environmental Engineering, Peavey, Rowe and Tchobanoglous: McGraw-Hill,
- 2. ISBN 13: 9780070491342
- 3. Air Pollution Control Theory, Martin Crawford: McGraw-Hill Inc., ISBN 13: 9780070134904
- 4. Air Pollution: Its Origin and Control, Wark and Warner: Prentice Hall, ISBN 13: 9780673994165
- 5. Noise pollution and control strategy, Singal S.P., Alpha Science International, ISBN 13: 9781842652374
- 6. Environmental Pollution Principles, Analysis and Control, Narayanan P., CBS Publishers, ISBN 13: 9788123914510

e – Resources:

- 1. https://urbanemissions.info/
- 2. https://doi.org/10.1007/s12647-022-00555-4
- 3. https://cpcb.nic.in/National-Air-Quality-Index/
- 4. https://cpcb.nic.in/about-namp/
- 5. https://cpcb.nic.in/noise-pollution-rules/
- 6. https://cpcb.nic.in/noise-limits-for-vehicles/
- 7. https://dst.gov.in/clean-air-research-initiative-cari

REFRENCE MANUAL:

- 1. AUTOMOTIVE INDUSTRY STANDARD (AIS-137) (Part 4)
- 2. Indian Emission Regulation Book- ARAI
- 3. INDIA BHARAT STAGE VI EMISSION STANDARDS

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)	
FINAL YEAR BACHELOR	COURSE NAME	Finite Element Method	
	COURSE CODE	CV478	
	COURSE CREDITS	3	
RELEASE DATE : 01/07/2022	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY		PRACTICAL	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
3	NIL	35	35	30	NIL	NIL	100

PRE-REQUISITE: 1. The basic knowledge of mechanics of solids and structural analysis

COURSE OBJECTIVES:

CV478.CEO.1: To study mathematical models create finite element models.

CV478.CEO.2: To comprehend quantitative and analytical methods.

CV478.CEO.3: To write simple computer programs for finite element analysis.

CV478.CEO.4: To Implement finite element methods for 1d and 2d model problems, and to evaluate and to interpret the numerical results.

CV478.CEO.5: To Apply finite element solutions to problems in structural engineering.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV478.CO.1: Understanding Mathematical Techniques used in FEM analysis

CV478.CO.2: Study the concepts of Nodes and elements [Understand].

CV478.CO.3: Use of FEA in Structural problem [Understand].

CV478.CO.4: Development of various Finite element modeling techniques for frame or truss.

CV478.CO.5: Generate the formulation of one-dimensional elements (truss and beam) and two-dimensional elements (triangle and quadrilateral continuum and shell elements) [Analysis]

CV478.CO.6: Analysis of for plates and shells by using FE analysis [Analysis]

THEORY	ζ				
UNIT 1	Introduction to Finite Element Analysis	6 HOURS			
Introduction Element Au	on, Basic Concepts of Finite Element Analysis, Introduction to Elasticity, Stenalysis Self Study: Study of various softwares based on FE analysis	eps in Finite			
UNIT 2	Finite Element Formulation Techniques	6 HOURS			
Virtual Work and Variational Principle, Galerkin Method, Finite Element Method: Displacement Approach, Stiffness Matrix and Boundary Conditions Self Study: Software testing with various approaches					
UNIT 3	Element Properties	8 HOURS			
Natural Co Solid Elemo gration: On Self Study:	ordinates, Triangular Elements, Rectangular Elements, Lagrange and Serendipi ents, Isoparametric Formulation, Stiffness Matrix of Isoparametric Elements, Nu ne Dimensional, Numerical Integration: Two and Three Dimensional, Worked of Software analysis for various elements	ty Elements, merical Inte- ut Examples			
UNIT 4	Analysis of Frame Structure	7 HOURS			
Stiffness of Continuous of Stiffenss	Truss Members, Analysis of Truss, Stiffness of Beam Members, Finite Elemen Beam, Plane Frame Analysis, Analysis of Grid and Space Frame Self Study: matrix 6x6	t Analysis of Calculation			
UNIT 5	FEM for Two and Three Dimensional Solids	7 HOURS			
Constant S ement Stiff metric Eler for 3 Dime	train Triangle, Linear Strain Triangle, Rectangular Elements, Numerical Eval ness, Computation of Stresses, Geometric Nonlinearity and Static Condensation ment, Finite Element Formulation of Axisymmetric Element, Finite Element nsional Elements, Worked out Examples Self Study: Stress calculation for solid	uation of El- ion, Axisym- Formulation l elements			
UNIT 6	FEM for Plates and Shells	6 HOURS			
Introduction ysis of Thick Element Ar	on to Plate Bending Problems, Finite Element Analysis of Thin Plate, Finite Element Analysis of Skew Plate, Introduction to Finite Strip Menalysis of Shell. Self study: Numerical analysis for plates and shells	lement Anal- ethod, Finite			

TEXT BOOK

- 1. Felippa, C. A. (2004). Introduction to finite element methods. University of Colorado, 885.
- Ern, A., Guermond, J. L. (2004). Theory and practice of finite elements (Vol. 159, pp. xiv-524). New York: Springer.
- 3. Bhavikatti, S. S. (2005). Finite element analysis. New Age International.
- 4. Nikishkov, G. P. (2004). Introduction to the finite element method. University of Aizu, 1-70.
- 5. Reddy, J. N. (2019). Introduction to the finite element method. McGraw-Hill Education.
- 6. Godbole, P. N. (2013). Introduction to Finite Element Method (p. 400). New Delhi: IK International Publishing House.

REFERENCE BOOK

- 1. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Thomas JR Hughes.
- 2. First Course in Finite Element Method, Jacob Fish, Ted Belytschko.
- 3. Applied Finite Element Analysis, LJ Segerlind.

MIT Academy of Engineering (An autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECH AND CIVIL ENGG.	W.E.F	AY: 2022 - 2023(R2019)	
FINAL YEAR BACHELOR	COURSE NAME	Capstone Portfolio	
	COURSE CODE	CV480	
	COURSE CREDITS	4	
RELEASE DATE : 01/07/2022	REVISION NO	1.0	

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY		PRACTICAL	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	ICE	ECE	IA		DEMONSTRATION	
-	8	-	-	-	-	150	150

PRE-REQUISITE: Students should understand to:

COURSE OBJECTIVES:

CV480.CEO.1: Improve and profuse individual perspectives on problems at different scales

- CV480.CEO.2: Identify and select the capstone work, formulate the methodology along with a significant collection of artifacts and outcomes.
- CV480.CEO.3: Synthesize a reflective report to effectively communicate and explore findings. s

CV480.CEO.4: Create a professional portfolio that technically, graphically and verbally describes pertinent achievements and the progressive growth during the program.

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV480.CO.1: Portray individual skill for solving the problem. (L4)

CV480.CO.2: Showcase and exhibit the best techniques and suitable methodology. (L5)

CV480.CO.3: Cognize the significance of report and comprehend its reflections. (L4)

CV480.CO.4: Assimilate digital and visual literacies. (L5)

COURSE ABSTRACT :

Capstone work is an individual, self-identified project that focuses on technical/non-technical issues. Capstone work requires taking risks, high productivity, strong design research, quick turnaround times, creating an advanced design. A Digital portfolio is an integrative collection of work that draws together skills gained from across the taught phase of the program. It comprises a structured set of papers that enabled application and critical reflection. It is an amalgamation of both written and visual content that draws out the evolution of thinking around the ways in which design, social constructs, and emerging technologies intercept. It exposed process, critical thinking, as well as final artifacts, concepts, and its contents articulated in depth. The student enables to learn powerful new methods to promote his online self-design profile. It will help to established a professional voice by writing a personal design philosophy and a reflective article for the Linked In profile page. The opportunity to choose the project,formulate solution, negotiate deliverable, work individually, and present digitally is what makes the Capstone portfolio unique.

Capstone portfolio is divided into two section a) Capstone work b) Digital Portfolio

CAPSTONE WORK : :

Individual student can choose the topic from one of the below capstones to carry out the work during the entire semester 1. Technical Capstone • Industry identified problem • Institute identified problem • Urban city identified problems • Rural Development • Environmental related problems • Student Conceived problems • Satisfactory solution to Open ended problems • Innovative Design stemming from Student/Faculty • Product Development • App/ Software Development • Multidisciplinary approach to existing problem • Modeling/Optimization/Analysis study 2. Writing Intensive Capstone • Design • Literature Survey • Commercial Survey • Social media Survey • Idea/ Design Philosophy • Research Methodology • Consultancy Project work • Collaborative Project work • Laboratory/Digital classroom • Manage/lead any Event/activity 3. General Capstone • State of art • Creating YouTube channel • Design Blog/Forum • Challenges and Prospect of Technology (Engineering) Education in Primary and Secondary Schools • Market Statistics

DIGITAL PORTFOLIO:

Individual student should create there own digital portfolio by using the standard professional platforms/blogs based on the record during their entire Under Graduate program. Digital portfolio should be professional, amalgamation of technical, written, graphical/Visual content and Verbal culmination of the skills and knowledge that students have developed over their under graduate program. Process Portfolio Show case Portfolio Hybrid Portfolio

GUIDELINES :

- 1. Individual student will work for Capstone work for entire semester.
- 2. Individual student will create their own digital portfolio.
- 3. Individual student should choose the title of the capstone work with approval from the Supervisor and School Dean
- 4. Student should work on the topic approved with all necessary information, evidences and the measurable outcomes.
- 5. Student will have to write the report on the capstone work
- 6. Students have to follow the guidelines of plagiarism for capstone report.
- 7. Student can skip the report if they are attempting Exemplary Capstone i.e. any one of the following. This will ensure the competency of students which they have learn during their undergraduate program.
 Published Article in Scopus Index Journal Approved Research Proposal Winner for Design Competitions/Tech fest/ Workshop Winner for State/National/International Event (Technical/Non-technical) Valid score in Competitive exams (GATE/CAT/GRE-TOEFL/IELTS)
- 8. Capstone work and Digital portfolio need to be reviewed by supervisor and one faculty of same department to ensure whether student have followed all the guideline and work is appropriate and worth for evaluation.
- 9. Capstone work and Digital portfolio need to be reviewed by supervisor and one faculty of same department to ensure whether student have followed all the guideline and work is appropriate and worth for evaluation.

ASSESSMENT and EVALUATION :

The two member jury/committee will be appointed to monitor the progress and continuous evaluation of each project. One of the member will be the Capstone work supervisor. Assessment shall be done jointly by the guide and jury members.

- 1 . Capstone work Review 1 (25 Marks)
- 2. Capstone work Review 2 (25 Marks)
- 3. Creating Digital Portfolio (50 Marks)
- 4. Report (25 Marks)
- 5. Final Demonstration (25 Marks)

REFERENCES :

1. https://design.berkeley.edu/ Berkeley M.Des. University of California, U.S. ://design.gatech.edu/ Georgia Institute of Technology, College of Design Atlanta, U.S.

2. https://www.apus.edu/ American Public University

3. https://msu.edu/ Michigan State University's US

4. https://www.cranfield.ac.uk Cranfield University, Shrivenham Swindon UK

 $5.\ https://my.bulbapp.com/personalized-learning/assessment-infographic-blog/$

6. https://edtechjeffco.weebly.com 7. https://www.invisionapp.com/inside-design/10-portfolio-websites-to-show-off-your-design-work/

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2022-2023 (Rev. 2019)
FINAL YEAR BACHELOR	COURSE NAME	Engineering Economics
OF TECHNOLOGI	COURSE CODE	HP405
	COURSE CREDITS	2
RELEASE DATE : 01/07/2022	REVISION NO	1.0

TEACHIN	G SCHEME	EXAMINATION SCHEME AND MARKS					
(HOUR	S/WEEK)	THEORY		TUTORIAL/	PRESENTATION/	TOTAL	
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION	
2	NIL	NIL	50	25	NIL	NIL	75

 $\mathbf{PRE}\text{-}\mathbf{REQUISITE:}\mathbf{NIL}$

COURSE OBJECTIVES:

HP405.CEO.1: To study the basic concepts of economics

HP405.CEO.2: To use the practical applications of economic feasibility

HP405.CEO.3: To understand the concept of banking and features

HP405.CEO.4: To illustrate the financial planning and saving options

COURSE OUTCOMES:

The students after completion of the course will be able to,

HP405.CO.1: Relate the basic concepts of engineering economics

HP405.CO.2: Apply the economic viability of firm/organization under different market conditions

HP405.CO.3: Explain the bank structures and its schemes

HP405.CO.4: Execute the effective way of financial budget and skills

THEORY	ζ					
UNIT 1	Introduction to Economics	6 HOURS				
Economic issues and concepts; How economist work, Theory of demand and supply; meaning, De- terminants, Equilibrium between demand and supply; Elasticity of demand; Price elasticity; Income elasticity; Cross elasticity, Characteristics of an Indian economy, Concepts of foreign trade, Goods and Services Tax (GST), Globalization, Liberalization, Privatization, Global market indices, Foreign Direct Investment (FDI). Case studies: Housing market, General raw products/fuel market, Electronic devices, Startups, etc. Further readings: Introduction to Crypto-currency, Impact and analysis in the foreign market.						
UNIT 2	Micro Economics and Macro Economy	6 HOURS				
Revenue concepts, Cost concepts, Short run and long run cost concepts and curves, Opportunity cost. Markets; meaning, types of markets and their characteristics, National Income (NI); meaning, stock and flow concept, NI at current price, NI at constant price, Gross National Product (GNP), Gross Domestic Product (GDP), Net National Product (NNP), Net Domestic Product (NDP), Personal income, Disposal income, Inflation: meaning, types, causes, measures to control. Case studies: Economics network, Economic influences of COVID-19 pandemic, etc.						
UNIT 3	Capital Cost Estimation and Economic Viability Study	5 HOURS				
Typical capital cost component, Cost Index (CI), Typical operating cost components, Classes of cost estimates, Cost estimation by applying factors, Detailed cost estimation method, Financial viability calculation (Payback period, Break-even point, Internal rate of return (IRR) and Net present value (NPV); numerical), Cash flow diagrams, Profitability criteria – Project evaluation and index. Case studies: Detailed spreadsheet of product cost, Determination of project cost, Net profit/loss,						
UNIT 4	Introduction to Banking & Money Market	5 HOURS				
Banking; meaning, types, functions, Commercial banks- Instruments in operation of an account, Central bank- Reserve Bank of India (RBI); its functions, Concepts and influences- Cash Reserve Ratio (CRR), Bank rate, Repo rate, Reverse repo rate, Statutory Liquidity Ratio (SLR), Introduction to money and capital market, Introduction to fiscal policy- meaning and tools. Further readings: Retail banking, Demonetization, Banking management, etc.						
UNIT 5	Financial Literacy and Planning	6 HOURS				
Importance products, H investing, C Case stud Self studie	e of financial planning, literacy and budgeting, Savings related products, Insur Pension, Retirement and estate planning, Borrowing related products, Basic a Government schemes for various savings and investment options, Tax savings o ies: Shore Financial, Real life examples, Goal-Planning, etc. es: Protect your family financial and retirement planning.	rance related nd advanced ptions.				

REFERENCE BOOKS

- 1. N.G. Mankiw: Economics: Principles of Economics, Cengage Learning (2003), ISBN: 1305585127.
- 2. J. Bradfield, Introduction to the Economics of Financial Markets, Oxford University Press, New York (2007), ISBN: 9780195310634.
- 3. F. Vega-Redondo, Economics and the theory of games, Cambridge University Press (2003), ISBN: 9780521775908.
- 4. C. S. Park, Fundamentals of Engineering Economics, Prentice Hall (2003), ISBN: 9780130307910.
- 5. D. E. O'Connor, The Basics of Economics, Greenwood Publisher (2004), ISBN: 9780313325205.
- V. V. Mahajani, S. M. Mokashi, Chemical Project Economics, Macmillan India Ltd. (2005), ISBN: 1403928142.

(An Autonomous Institute Affiliated to SPPU)	COURSE	SYLLABUS
SCHOOL OF HUMANITIES AND ENGINEERING SCIENCES	W.E.F	2022 - 2023 (Rev. 2019)
FINAL YEAR BACHELOR	COURSE NAME	Psychology
OF TECHNOLOGI	COURSE CODE	HP406
	COURSE CREDITS	2
RELEASE DATE : 01/07/2022	REVISION NO	1.0

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS						
(HOURS/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL		
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION		
2	NIL	NIL	50	25	NIL	NIL	75	

$\mathbf{PRE}\text{-}\mathbf{REQUISITE:}\mathbf{NIL}$

COURSE OBJECTIVES:

HP406.CEO.1: To introduce the basic concept of Psychology.

- HP406.CEO.2: To explain how learning and conditioning occurs in everyday life through both nature and nurture factors.
- HP406.CEO.3: To know the main schools of thought and prime contributors to the theory of workplace motivation.

HP406.CEO.4: To develop insight into one's own and others behavior and underlying mental processes.

HP406.CEO.5: To develop Positive Psychology interventions to increase personal well-being.

COURSE OUTCOMES:

The students after completion of the course will be able to,

HP406.CO.1: Explain the basic concepts of Psychology.

HP406.CO.2: Apply the concept of conditioning in day to day life.

HP406.CO.3: Explain the main schools of thought and prime contributors to the theory of workplace motivation.

HP406.CO.4: Demonstrate effetely the personality traits in regular life.

HP406.CO.5: Employ Positive Psychology interventions to increase personal well-being.

THEORY				
UNIT 1	Basics of Psychology	6 HOURS		

Meaning, Nature, Objective of Psychology, Learning: meaning, classical conditioning, operant conditioning; Attention and Perception: definition, types of attention, determinants of attention.

UNIT 2 **Social Interactions**

Conformity, Compliance, Obedience, Stereotypes, Attitudes: nature, characteristics, attitude formation and attitude change; Prejudice and Discrimination- characteristics and types of prejudice, development and maintenance of prejudice and discrimination, manifestation of prejudice, methods of reducing prejudice and discrimination.

UNIT 3 Need and Motivation

Meaning; extrinsic and intrinsic motivation, Vroom's Expectancy Theory of Motivation, Herzberg's Motivators and Hygiene Factors, Maslow's Hierarchy of Needs.

UNIT 4 Self and Identity

Meaning and Need, Erik Erikson's Stages of Psychosocial Development, Carl Rogers' Theory of Personality, Thomas Harris's Transactional Analysis, Johari Window, SWOT.

UNIT 5 **Positive Psychology**

Introduction to Positive Psychology; From Learned Helplessness to Learned Optimism, 'Building the Skill of Gratitude, VIA Classification of Character Strengths and Virtues, Identifying and Using Your Signature Strengths, Resilience and Optimism, Cognitive Strategies to Increase Optimism and Resilient Thinking, Managing Anxiety and Increasing Positive Emotions.

TEXT BOOK

- 1. S. Cicearelli, J. Noland White, Psychology 4th Edition, Pearson Publisher, ISBN-13:9780208972241.
- 2. Robert A. Baron, Introduction to Psychology 3rd Edition, Pearson Education Company, ISBN-10:0536813906.
- 3. Stephen P. Robbins, Timothy. A. Judge, Organizational Behavior 15th Edition, Pearson Education Inc., ISBN-10:0-13-283487-1.
- 4. Robert. A. Baron, Nyla. R. Branscombe, Social Psychology 13th Edition, Pearson Education India, ISBN-13:978-9332569911.

6 HOURS

4 HOURS

6 HOURS

6 HOURS

REFERENCE BOOK

- 1. Kathleen M. Galotti, Cognitive Psychology 2nd Edition, SAGE Publications India Pvt. Ltd. ISBN:978-93-515-0277-7.
- 2. Robert S. Feldman, Understanding Psychology 10th Edition, McGraw Hill Education (India) ISBN:10: 1-25-900305-1.
- Elliot Aronson, Timothy D. Wilson, Robin M. Akert, Social Psychology 8th Edition, Pearson Education, ISBN:9788131730898.
- 4. Calvin S. Hall, Gardner Lindzey, John B. Campbell, Theories of Personality 4th Edition Choudhary Press, Delhi, ISBN: 978-81-265-1092-4.

(An Autonomous Ins	Academy of Engineering (An Autonomous Institute Affiliated to SPPU)		COURSE SYLLABUS		
SCHOOL OF ME ENG	ECHANICAL & CIVIL INEERING	W.E.F	AY: 2022 - 2023 (R-2019)		
FINAL YE	AR BACHELOR	COURSE NAME	Semester Long Internship Program (SLIP)-Design		
		COURSE CODE	CV467		
	VGINLENING	COURSE CREDITS	4		
RELEASE D	DATE : 01/07/2022	REVISION NO	1.0		

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS						
(HOURS/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL		
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION		
NIL	NIL	NIL	NIL	NIL	NIL	150	150	

PRE-REQUISITE:NIL

COURSE OBJECTIVES:

CV467.CEO.1: To get acquainted with the organization structure

CV467.CEO.2: To gain learning and living experience

CV467.CEO.3: To develop appropriate workplace attitudes

CV467.CEO.4: To get Hands-on experience in the related field to relate and reinforce what has been taught at the university

CV467.CEO.5: To formulate the problem statement

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV467.CO.1: Analyze a given engineering problem

CV467.CO.2: Identify an appropriate problem solving methodology

CV467.CO.3: Prepare themselves to work in cross-cultural, multi-national environment

CV467.CO.4: Improve self-confidence and independency

 $\mathrm{CV467.CO.5:}$ Develop ability to work individually as well as in groups

ELIGIBILITY:

I. No live backlogs

II. If Recruiter/s (MNCs) have asked for semester long internship to the selected student/s (before joining the organization after his / her graduation), then in special case recruited students can apply for the same. (Only criteria-I should be satisfied by the student).

Only students satisfying the above criteria can be permitted for semester-long internship in any MNCs / R&D laboratories such as DRDO, NCL, NEERI, CDAC and Institutions like IITs/ NITs / International institutes of repute.

APPLICATION PROCEDURE:

The student must submit a proposal of the semester-long internship including the details of the organization along with the details of the project in brief, copy of their CV and copies of mark-sheet to the respective school corporate relations (CR) coordinator. The application must be prescibed in the SLIP policy.

TIMELINE:

The Semester Long Internship Program (SLIP) is carried out in two phases viz. SLIP - Design and SLIP - Implementation. SLIP - Design is a mandatory phase.

ASSESSMENT METHOD FOR SEMESTER LONG INTERNSHIP:

I. Credits for the semester-long internship need to be earned by the students by the following assessment in front of the panel. The Panel for the evaluation should be 3 members or 4 members. The composition of the team would be as follows:

- a. Dean, Respective School
- b. Project Guide
- c. CR Coordinator / Project Coordinator
- d. Project Guide (Industry)
- e. The domain expert

II. Presentation I in the mid of the internship and Presentation II at the end of the internship combined to a total weightage of 4 credits. In grade card it will be mentioned as SLIP - Design.

(An Autonomous Institute Affiliated to SPPU)	COURSE SYLLABUS		
SCHOOL OF MECHANICAL & CIVIL ENGINEERING	W.E.F	2022-2023 (Rev. 2019)	
FINAL YEAR BACHELOR	COURSE NAME	Semester Long Internship Program (SLIP)-Implementation	
	COURSE CODE	CV468	
	COURSE CREDITS	4	
RELEASE DATE : 01/07/2022	REVISION NO	1.0	

TEACHING SCHEME		EXAMINATION SCHEME AND MARKS						
(HOURS/WEEK)		THEORY		TUTORIAL/	PRESENTATION/	TOTAL		
LECTURE	PRACTICAL	MSE	ESE	IA	PRACTICAL	DEMONSTRATION		
NIL	NIL	NIL	NIL	NIL	NIL	150	150	

PRE-REQUISITE: NIL

COURSE OBJECTIVES:

CV468.CEO.1: To get acquainted with the organization structure

CV468.CEO.2: To gain learning and living experience

CV468.CEO.3: To develop appropriate workplace attitudes

CV468.CEO.4: To get Hands-on experience in the related field to relate and reinforce what has been taught at the university

 $\mathrm{CV468.CEO.5:}$ To formulate the problem statement

COURSE OUTCOMES:

The students after completion of the course will be able to,

CV468.CO.1: Analyze a given engineering problem

CV468.CO.2: Identify an appropriate problem solving methodology

CV468.CO.3: Prepare themselves to work in cross-cultural, multi-national environment

CV468.CO.4: Improve self-confidence and independency

 $\mathrm{CV468.CO.5:}$ Develop ability to work individually as well as in groups

ELIGIBILITY:

I. No live backlogs

II. Semester Long Internship Program (SLIP) - Design must be completed.

III. If Recruiter/s (MNCs) have asked for semester long internship to the selected student/s (before joining the organization after his / her graduation), then in special case recruited students can apply for the same. (Only criteria-I should be satisfied by the student).

Only students satisfying the above criteria can be permitted for semester-long internship in any MNCs / R&D laboratories such as DRDO, NCL, NEERI, CDAC and Institutions like IITs/ NITs / International institutes of repute.

ASSESSMENT METHOD FOR SEMESTER LONG INTERNSHIP:

I. Credits for the semester-long internship need to be earned by the students by the following assessment in front of the panel. The Panel for the evaluation should be 3 members or 4 members. The composition of the team would be as follows:

- a. Dean, Respective School
- b. Project Guide
- c. CR Coordinator / Project Coordinator
- d. Project Guide (Industry)
- e. The domain expert

II Presentation at the end of the internship work and final internship report after the completion of the internship work combined for a total weightage of 4 credits and should be as per the template. In grade card it will be mentioned as SLIP - Project Implementation.