

MIT ACADEMY OF ENGINEERING, ALANDI

An Autonomous Institute Affiliated to

Savitribai Phule Pune Univeristy

Curriculum

For

Master of Technology

In

Heat Power

(Choice Based Credit System)

2016 Pattern

restresses and a second second

Member Secretary

Academic Council

(Dean, Academics)

Chairman Academic Council (Director, MITAOE)

BoS Chairman (Dean, SMCE)

M Tech

Mechanical Engineering

2016 Course

(w.e.f.: Academic Year 2016-17)

Credit Table

Year	Semester	Credits
F Y M Tech	I	12
F Y M Tech	II	10
F Y M Tech	III	12
S Y M Tech	IV	10
S Y M Tech	V	10
S Y M Tech	VI	10
Total	64	

(An Autonomous Institute)		CURRICULUM STRUCTURE (2016 - 2018)							
DEF	PARTMENT	OF MECHAN NGG.	ICAL	W. E. F	:	2016-17			
				RELEASE DATE	:	01/06/2017			
	FYI	MIECH		REVISION NO.	:	0.0			
TRIM	IESTER: I								
SL.	COURSE	COURSE				TEACHI	NG SC	HEME	
No.	TYPE	CODE		COURSE		L	Т	CREDIT	
1.	PC1	AS501	Computir	ng and Mathematics	;	2	2	4	
2.	PC2	CS501	Manager	nent System		2	2	4	
3.	PC3	CS502	Modern 7	Fechnology		2	2	4	
	TOTAL					6	6	12	
TRIME	STER: II								
SL.	COURSE	COURSE		COURSE		TEACHING SCHEME			
No.	TYPE	CODE		COOKSE		L	Р	CREDIT	
1.	PC4	EX501	Research	n Methodology		2	-	2	
2.	DC1	ME511	Advance Combust	d Thermodynamics ion Technology	and	3	2	4	
3.	DC2	ME512	Advance	d Heat Transfer		3	2	4	
		то	TAL			8	4	10	
TRIME	STER: III								
SL.	COURSE	COURSE		COURSE		TEACHI	NG SC	HEME	
No.	TYPE	CODE				L	Р	CREDIT	
1.	PC5	EX502	Technica	l Writing		2	-	2	
2.	DC3	ME521	Advance	d Fluid Mechanics		3	2	4	
3.	DC4	ME522	Design o equipme	f Heat Transfer nt's	3	2	4		
4.	DC5	ME523	•	4	2				
		то	TAL			8	8	12	

Format No.: MITAOE/ACAD/ 001

Rev. Date: 01/12/2017

(An Autonomous Institute)			CURRICULUM STRUCTURE (2016 - 2018)					
DEI	PARTMENT	OF MECHAN	IICAL	W. E. F	:	2017-18		
				RELEASE DATE	:	01/06/2017		
	SY	МТЕСН		REVISION NO.	:	0.0		
TRIN	IESTER: IV					L		
SL.	COURSE	COURSE		COURSE		TEACHI	NG SC	HEME
No.	TYPE	CODE		COURSE		L	Р	CREDIT
1.	DE1	ME63*	Elective	course – I		3	-	3
2.	DE2	ME64*	Elective	course – II		3	-	3
3.	DC6	ME601	Project V	/ork - II		•	8	4
TOTAL					6	8	10	
TRIME	STER: V							
SL.	COURSE	COURSE		COURSE		TEACHING SCHEME		
No.	TYPE	CODE		COOKSE		L	Р	CREDIT
1.	DC7	ME611	Project V	/ork - III		•	20	10
		то	TAL			-	20	10
TRIME	STER: VI							
SL.	COURSE	COURSE		COURSE		TEACHI	NG SC	HEME
No.	TYPE	CODE				L	Р	CREDIT
1.	DC8	ME621	Project W	/ork - IV	•	20	10	
TOTAL						-	20	10
1								1

DICIPLINE ELECTIVE DETAILS

- 1) Any one course to be selected for Trimester IV from elective course I and elective course II.
- 2) The corresponding course to be chosen from same domain.

Electiv	ve course	– I							
SL.	SL. COURSE C		COURSE	TEACHING SCHEME					
No.	TYPE	CODE	COURSE	L	Р	CREDIT			
1.	DE1.1	ME631	Advances in IC engines	3	-	3			
2.	DE1.2	ME632	Energy Conservation and Management	3	-	3			
<mark>3.</mark>	DE1.3	ME633	Computational Fluid Dynamics	3	-	3			
4.	DE1.4	ME634	Compressible Fluid flow and Gas Dynamics	3	-	3			
Electiv	Elective course – II								
SL.	COURSE	COURSE	COURSE	TEACHING SCHEME					
No.	TYPE	CODE	COURSE	L	Р	CREDIT			
1.	DE2.1	ME641	Advanced Air Conditioning and Refrigeration Technology	3	-	3			
2.	DE2.2	ME642	Industrial Hydraulics and Pneumatics	3	-	3			
3.	DE2.3	ME643	Cryogenics and Vacuum Technology	3	-	3			
4.	DE2.4	ME644	Steam Engineering	3	-	3			

(An Autono	A E	cademy of ngineering us Institute)	COURSE SYLLABI (2016-2018)			
DEPARTMENT O	F ME	CHANICAL ENGG.	W.E.F.	:	2016-17	
			COURSE NAME	:	Computing and Mathematics	
F	Y MTE	ECH	COURSE CODE	:	AS501	
			COURSE CREDITS	:	04	
RELEASE DATE	:	1/08/2016	REVISION NO.	:	0.0	

TEACHING	SCHEME :				EVALUATION S	CHEME :	
LECTURE	τυτοριλι	THEORY				PRESENTATION/	τοται
	TUTURIAL	ITA	ETA	IA	PRACTICAL	DEMONSTRATION	
2	2	40	50	10	NIL	NIL	100

PRE-REQUISITE:	
NIL	

COURSE OBJECTIVES:

- 1. AS501.CEO.1: To learn different numerical methods to solve differential equations and obtain the solution.
- 2. AS501.CEO.2: To understand different sampling techniques, analyze the data and process it to obtain a quality product.
- 3. AS501.CEO.3: To learn mathematical methodologies, techniques and mathematical tools to obtain an optimal solution of the problems.

COURSE OUTCOMES:

After completion of the course, the students will be able to

- 1. AS501.CO.1: Identify the accurate solution method (minimizing the error) to solve the differential equation with given conditions and obtains the particular solution of the problem.
- 2. AS501.CO.2: Collect, categorize, analyze, processing mathematically the data, thereby to obtain a quality proven product.

Format No.: MITAOE/ACAD/ 001

3. AS501.co.3: Understand the physical situation, identify the accurate mathematical model and solve the problem mathematically or with the use of Statistical tools available and finally interpret it in the original context

THEORY:

Computational Methods to Ordinary Differential Equations: Euler's Method, Heun's Method, Midpoint Method, Runge-Kutta Method and Multi step Methods- Explicit Adams-Bash forth technique and Implicit Adams-Moulton techniques, Adaptive RK Method, Embedded RK Method, Higher Order Ordinary differential equation- Shooting Method.

Operations Research: Simplex method: Feasible solution to system of equations, reduction of feasible to basic feasible solution, solution of LPP: computational procedure, Penalty (Big M) method. Transportation problem: North-West corner method, Least-cost method, Vogel's approximation method.

Statistics and Quality Control: Central Tendency of data, Variance, Standard Deviation, Coefficient of Variance, Moments, Correlation, Coefficient of Correlation, Regression lines. Control Charts for Process Location: \overline{X} Chart, Control Charts for Process Variation: S Chart, R charts.

PRACTICAL:									
Practical No. 1	Title: First Degree Differential equation	2 Hours							
Introduction to first	Introduction to first order first degree Differential equation and its actual solution								
Practical No. 2	Title: Differential equation methods	2 Hours							
Euler's Method, He	un's Method, Mid- point Method, Runge-Kutta Method.								
Practical No. 3	ractical No. 3Title: Differential equation Methods2 Hours								
Adams-Bash forth t	echnique and Implicit Adams-Moulton techniques.	I							
Practical No. 4	No. 4Title: Differential equation Methods2 Hour								
Adaptive RK Metho	d Embedded RK Method, Shooting Method.								
Practical No. 5	Title: Simplex method Feasible solution	2 Hours							
Solution of system	of equations using simplex method (Feasible solution).								
Practical No. 6	Title: simplex method (Feasible to basic feasible solution).	2 Hours							
Solution of system	of equations using simplex method (Feasible to basic feasible solu	tion).							
Practical No. 7	Title: Transportation problem	2 Hours							
Transportation problem: North-West corner method, Least-cost method.									
Practical No. 8Title: Vogel's approximation method2 Hours									
Transportation prob	blem: Vogel's approximation method.								

Format No.: MITAOE/ACAD/ 001

Practical No. 9	Title: Central Tendency of data, Variance, Standard Deviation2 Hours						
Central Tendency of data, Variance, Standard Deviation.							
Practical No. 10Title: Moments, Correlation, Coefficient of Correlation2 Hours							
Moments, Correlation	Moments, Correlation, Coefficient of Correlation.						
Practical No. 11	2 Hours						
Regression Lines.							
Practical No. 12	2 Hours						
X Chart, S Chart, R chart							

TEXT BOOKS:
1. Numerical Methods for Engineers by Steven C. Chapra& Raymond P. Canale, sixth edition, ISBN 078, 0, 07, 340106, 5, MHID 0, 07, 340106, 4
970-0-07-340100-3, MITID 0-07-340100-4.
2. Operations Research by KantiSwarup, P.K.Gupta, Man Monan, ISBN: 81-8054-226-2.
3. Statistical Methods Vol. 2 by Das, ISBN:9780070263512.
REFERENCES:
1. Numerical Methods by V.N. Vedamurthy&N.Ch.S.N.Iyenger, First edition, ISBN: 9788125906308.
2. Operations Research by S.D.Sharma.
3. Statistical Methods Vol. 1 by Das, ISBN:9780070263505.

4. AHA Statistical Update, AS Go, D Mozaffarian, VL Roger, EJ Benjamin... - Circulation, 2013 - Am Heart Assoc.

(An Autono	A E	cademy of ngineering us Institute)	COURSE SYLLABI (2016-2018)			
DEPARTMENT O	F ME	CHANICAL ENGG.	W.E.F.	••	2016-17	
			COURSE NAME	:	Management System	
F١	/ МТЕ	CH	COURSE CODE		CS501	
			COURSE CREDITS	:	04	
RELEASE DATE	:	1/08/2016	REVISION NO.	:	0.0	

TEACHING	EVALUATION SCHEME :						
LECTURE	τυτοριλι	THEORY			PRESENTATION/	τοται	
	TUTURIAL	ITA	ETA	IA	PRACTICAL	DEMONSTRATION	IUTAL
2	2	40	50	10	NIL	NIL	100

PRE-REQUISITE:	
NIL	

COURSE OBJECTIVES:

- 1. CS501.CEO.1: To enable M.Tech Students in efficiently and effectively discharging any business related roles, which they may be assigned, after successful completion of their Post- Graduation from MITAOE.
- 2. CS501.CEO.2: To inculcate a spirit of entrepreneurship by promoting inquisitiveness for technological innovations, their conversion into business ideas and evolving strategy for induction of new products in new markets for growth of their entrepreneurial projects.

COURSE OUTCOMES:

After completion of the course, the students will be able to

- 1. CS501.CO.1: Describe and explain the Significance of Businesses in Society, their Management and linking these up with other relevant systems.
- 2. CS501.CO.2: Critically analyze the organizational structure, systems, competencies and identify the areas of improvement
- 3. CS501.CO.3: Draw a model of power structure and critically analyse with a view to improving it for achieving greater heights in objectives
- 4. CS501.CO.4: Identify and describe potential problem areas and advise proactive measures to install efficient measures.
- 5. CS501.CO.5: Identify Key Result Areas (KRAs), new area of growths, draw plans to achieve, implement them and provide effective leadership in the process, creating conducive environment in the organization

THEORY:

Concept of Systems; Concept of Business; Concept of Management; Concept of Learning and its mapping with Bloom's Taxonomy.

Nature and Process Management with an Input-Output Model, seen in scenarios of different aspects of social life.

Role of a Business Firm as a national economic entity with understanding of Macro, Micro and International economics. An understanding of products and services, circular model of flow of money, products and services in a society.

Essentials of Business Management, functioning and growth of a Business Unit with understanding of Break-Even Analysis, Abell's Three Dimensional model of business growth, various business functions in an organization and changing focus from production oriented business to customer orientation and value co-creation.

Various Schools of Thought on Management based on changing concepts of economics and evolution of Business Strategy. Need to understand innovative ways to evolve a new suitable management system for an organization with special focus on new Strategies at the bottom of the pyramid, quality as strategy, disruptive innovation and diffusion of technology.

Decision making, as an essence of management. Concept of Games Theory and its use in decision making.

Essentials of Project Management with use of Critical Path Method (CPM) and Programme Evaluation

and Review Techniques (PERT).

Utilization of concepts of commanding, directing, managing and leading towards effective management of an organization. Skillful use of Emotional Intelligence in conflict management. Techniques for Self Management and Stress Management for improving personal efficiency and effectivity.

Growing significance of Human Relations, with use of Virtual and Informal Organizations and use of Social Media for management of emerging organizations with preponderance of knowledge workers and growing use of robotics and Artificial Intelligence. Process of evolving a Training needs in an organization and methodology for their fulfillment.

Concepts of Invention Innovation, Entrepreneurship and Technology Management for induction of new products in market. Business startups and growth in current Indian Environment. Presentation on Entrepreneurial plans

PRACTICAL:							
Practical No. 1	I No. 1Corporate management case presentation4 Hours						
A corporate manag	amont case to be calested by students on their own choice, writing a	Syponeie (2.5					
A corporate manag	ement case to be selected by students on their own choice, writing a	Synopsis (2.5					
Marks) and its Pres	entation before the class in 5 Minutes including answers to questions	by class (2.5					
Marks							
Practical No. 2	Entrepreneurial Business Plan presentation	4 Hours					
Preparation and su	bmission of an innovative and entrepreneurial Business Plan of stude	nt's own					
choice, submitting a Power Point Presentation to be evaluated by Faculty (2.5 Marks), and its							
presenting/ defending it before the class, to be evaluated by two peers on a Format to be given by							
Faculty (2.5 Marks)							

TEXT BOOKS:
1. Management – A Global and Entrepreneurial Perspective; Harold Koontz, Heinz Weihrich and
Mark V Cannice, Tata McGraw Hill Publications, 12thEdition, 2008.
2. Management and Entrepreneurship in Indian Environment – A Perspective through Joining the
Dots; Vachaspati Mishra; Himalaya Publishing House, First Edition, 2016.
REFERENCES:

Format No.: MITAOE/ACAD/ 001

- Dr A Sivathanu Pillai; Technology Leadership A Revolution in the Making; Tata McGraw Hill Publishing Company Ltd, New Delhi, 2005
- James A Alexander and Mark W Hordes; S-Business: Reinventing the Services Organisations, Select Books Inc Biztantra, 2006
- 3. Vohra ND, Quantitative Techniques in Management; Tata McGraw Hill Publishing Company Limited, Third Edition 2007
- 4. Nakkiran S and Karthikeyan M; Training Techniques for Management Development; Deep and Deep Publications Pvt Ltd; 2007
- 5. Kshetri, Nir, "The Indian Environment for Entrepreneurship and Small Business Development" in *StudiaNegotia*, 56 (LVI), 4, 2011, 35-52

(An Autono	A E	cademy of ngineering is Institute)	COURSE (2010	E S` 6-2(YLLABI D18)
DEPARTMENT C	F ME	CHANICAL ENGG.	W.E.F.	:	2016-17
			COURSE NAME	••	Modern Technologies
F	Y MTE	CH	COURSE CODE		CS502
			COURSE CREDITS		04
RELEASE DATE	:	1/08/2016	REVISION NO.	:	0.0

TEACHING	EVALUATION SCHEME :						
LECTURE	TUTOPIAL	THEORY			PRESENTATION/	τοται	
LEGIURE	TOTORIAL	ITA	ETA	A IA	FRACTICAL	DEMONSTRATION	IUIAL
2	2	40	50	10	NIL	NIL	100

PRE-REQUISITE:	
NIL	

COURSE OBJECTIVES:

- 1. CS502.CEO.1: To get familiar with big data, wireless sensor networks and Internet of Things technology.
- 2. CS502.CEO.2: To acquire the knowledge of geometrical transformation and grasp the animation techniques.
- 3. CS502.CEO.3: Study basic principles of nano car and different modern technologies
- 4. CS502.CEO.4: Apply their knowledge to understand different statistical tools and analysis software.

COURSE OUTCOMES:

After completion of the course, the students will be able to

- 1. CS502.CO.1: Understand the knowledge of advanced software's.
- 2. CS502.CO.2: Apply their knowledge in different fields.
- 3. CS502.CO.3: Apply advance technologies in automobile industry.

THEORY:

Big Data: Big Data, Hadoop Distributed File System, Network: Types of Networks, Internet Architecture, Wired and Wireless MAC, RFID, Internet of Things, IoT Applications, R Programming.

2D and 3D Geometrical Transformations: Scaling, Translation, Rotation, Reflection, Viewing Transformations: Parallel and Perspective Projection, Curves and Surfaces: Cubic Splines, Bezier Curves, B-Splines, Animation Technology – OpenGL, Maya, Blender.

Advance technologies: Nano Car Air velocity, Air conditioning system, Different modern energy storage devices, Modern evacuated tube technologies, Advanced Sensor technology, recent photovoltaic technology, Controlling of thermal power plants and its instrumentation, Agricultural robot, Closed ecological systems, Artificial photosynthesis, Energy harvesting.

Modern statistical tools like MATLAB, SPSS, etc., Mathematical Modeling, Data interpretation technologies like ANOVA, Introduction of Analysis software's like ANSYS, Star CD, etc., ERP system, SCADA, PLC System, Electronic Control Unit (ECU), Sources of Energy storage, fuel efficient engine through closed loop control system. Advances in Electronic Cooling Equipments. Bio-medical devices, their Applications, FDA approval procedures, A Certification.

Advances in automotive electronics: Night vision systems, Driver alertness monitoring, Event data recorders (automotive black boxes), Accident recorders, Adaptive cruise control systems, Autonomous emergency breaking systems, Electronic throttle control, On-Board diagnostics systems, Blind spot detection, Navigation systems, Communication systems, Engine control

PRACTICAL:							
Practical No. 1 Title: Animation Technologies							
Case study on Anin	nation Technologies						
Practical No. 2	Title: Wireless Sensor Application	2 Hours					
Case study on Wire	eless Sensor Application.						
Practical No. 3	Title: Internet of Things	4 Hours					
Case study on IoT	(Smart City, Healthcare, Agriculture).	I					
Practical No. 4 Title: Hadoop 4 Hours							
Case study on Big	Data – Hadoop Configuration.						
Practical No. 5Title: Data interpretation2 Hor							
Case study on Data	a interpretation technologies.						
Practical No. 6Title: Agricultural robot2 Hours							
Case study on Agri	cultural robot.	1					
Practical No. 7Title: Electronic cooling equipments.2 Hours							
	1						

Format No.: MITAOE/ACAD/ 001

Rev. Date: 01/12/2017

Case study on Electronic cooling equipments.							
Practical No. 8Title: Adaptive cruise control system2 Hours							
Case study on Adaptive cruise control system							

TEXT BOOKS:
1. S. Harrington, S. Harrington, "Computer Graphics", 2nd Edition, McGraw-Hill Publications, 1987, ISBN 0 – 07 –100472 – 6.
 Anthony F. Collings, Christa Critchley, "Artificial Photosynthesis: From Basic Biology to Industrial Application." 2014, ISBN: 978-3-527-31090-6.
 NasimulAlam Syed, Sanjib Islam, Saroj Kumar Patel, "Advanced Guide to MATLAB: Practical Examples in Science and Engineering" I K International Publishing House Pvt. Ltd., 2015, ISBN: 978-9384588359.
4. William B. Ribbens, Ph.D., Norman P. Mansour, Gerald Luecke, Charles W. Battle, Edward C. Jones and Leslie E. Mansir, "Understanding Automotive Electronics", ISBN: 978-0-7506-7599-4.
5. Bosch Automotive Electrics and Automotive Electronics: Systems and edited by Robert Bosch GmbH, Springer science and digital media,ISBN-13: 978-3658017835, 2013.
REFERENCES:
 J. Foley, V. Dam, S. Feiner, J. Hughes, "Computer Graphics Principles and Practice", 2nd Edition, Pearson Education, 2003, ISBN 81 – 7808 – 038 – 9.
 Donald Norris, "The Internet of Things: Do-It-Yourself at Home Projects for Arduino, Raspberry Pi and BeagleBone Black", McGraw-Hill Education, ISBN-13: 978-0071835206, 2015.
 MadhuJagadeesh, SoumendraMohanty, HarshaSrivatsa, "Big Data Imperatives: Enterprise Big Data Warehouse, BI Implementations and Analytics", 1st Edition, Apress, ISBN-13: 978-1430248729, 2013.
 Pritpal Singh, TanjotSethi, Bunil Kumar Balabantaray, BibhutiBhushanBiswal, "Advanced vehicle security system", IEEE, International Conference on "Innovations in Information, Embedded and Communication Systems (ICIIECS)", pages 1-6, 2015.
5. Hermann Kopetz, Stephan Poledna, "Autonomous Emergency Braking: A System-of-Systems perspective", IEEE, Conference on "Dependable Systems and Networks Workshop (DSN-W)", 43rd Annual IEEE/IFIP, pages 1-7, 2013.

(An Autonor	A E mo	cademy of ngineering us Institute)	COURSE SYLLABI (2016 -2018)			
DEPARTMENT C)F N	IECHANICAL ENGG.	W.E.F.	:	2016-17	
			COURSE NAME	:	Research Methodology	
F	YM	TECH	COURSE CODE	:	EX501	
			COURSE CREDIT	:	2	
RELEASE DATE	:	1/06/2017	REVISION NO.	:	0.0	

TEACHING SCHEME :					EVALUATION	SCHEME :	
LECTURE	PRACTICAL	THEORY				PRESENTATION/	τοται
	FRACTICAL	ITA	ETA	IA	FRACTICAL	DEMONSTRATION	IUIAL
2	Nil	40	50	10	Nil	Nil	100

PRE-REQUISITE:

NIL

COURSE OBJECTIVES:

- 1. EX501.CEO.1: To develop understanding of the basic framework of research process.
- 2. EX501.CEO.2: To develop an understanding of various research designs and techniques.
- 3. EX501.CEO.3: To identify various sources of information for literature review and data Collection.
- 4. EX501.CEO.4: To develop an understanding of the ethical dimensions of conducting applied research.
- 5. EX501.CEO.5: Appreciate the components of scholarly writing and evaluate its quality.

COURSE OUTCOMES:

- 1. EX501.CO.1: Illustrate the objective & paradigm for the research.
- 2. EX501.CO.2: Establish & validate the results & analysis.
- 3. EX501.CO.3: Explore the ethical issues concerning the participation & data collection.

THEORY	:				
Unit I	Research - Introduction	8 Hours			
What is Identifyin	research, Research definition, Objective & paradigm for the research, Te g & defining the research problem, Type of research , Literature ⁢'s analys	rminologies, is.			
Unit II	Research Framework	6 Hours			
Developn participar	nent of theoretical and conceptual frame work , Ethical Issues concernints, Ethical issues in data collection, Data collection methods.	ng research			
Unit III	Hypothesis	6 Hours			
What is H of Hypothe	ypothesis - Definition and functions of hypothesis, Processing operations, Diesis,	fferent types			
Unit IV	Data processing	6 Hours			
Problems	in data processing, Coding descriptive data and quantitative data, Sampling	techniques.			
Unit V	Statistics in research	6 Hours			
Multivariate analysis, Concept of regression, Establishing validity and reliability of the result, Principal component analysis, variance & covariance- ANOVA, ANOCOVA.					
Unit VI	Writing research proposal	4 Hours			
Interpretation and its meaning, Readability of Manuscript, techniques, Contents, Report writing, structure, types of report, Procedure of writing research proposal, Writing as thinking, Habit of writing, Skills and thought process in technical writing, Role of computer in technical writing.					

TEXT BOOK:
 John W. Creswell," Research Design-Qualitative & Quantitative Approaches", SAGE publications, New Delhi ISBN: 0-8039-5254-6
 Ranjit Kumar," Research Methodology- A Step by Step Guide for Beginners", 2nd ed., Pearson publication, New Delhi ISBN: 978-81-317-0496-7

REFERENCEs:

- 1. C. R. Kothari," Research Methodology, Methods & Techniques", 2nd Edition, New Age International Publication ISBN: 978-81-224-1522-3
- 2. Hamdy A. Taha, "Operation Research- An Introduction", 8th Edition, Pearson Publication.

(An Autonomo	Academy of Engineering ous Institute)	COURS (201	E S 6 - 2	SYLLABI 2018)
DEPARTMENT OF ME	CHANICAL ENGG.	W.E.F.	:	2016-17
F.Y. MTI	ЕСН	COURSE NAME	••	Advance Thermodynamics and Combustion Technology
		COURSE CODE	•	ME 511
		COURSE CREDITS	:	4
RELEASE DATE :	01/06/2017	REVISION NO.	•	0.0
				•

TEACHING SCHEME:					EVALUATION	SCHEME:	
	PRACTICAL	THEORY					τοται
LECTURE		ICE	ECE	IA	PRACTICAL	TUTURIALS	IUIAL
3	2	40	50	10	NIL	NIL	100

PRE-REQUISITE:	
NIL	

COURSE OBJECTIVES:

- 1. ME511.CEO.1 To understand the thermodynamic process and the methods for analyzing thermodynamic properties.
- 2. ME511.CEO.2 To determine the direction of the process by the analysis of exergy, entropy, free energy, etc.
- 3. ME511.CEO.3 To master the property equations and thermodynamic properties of real gases, master the methods for analyzing multi-component systems.
- 4. ME511.CEO.4 To acquire basic knowledge of chemical thermodynamics, and grasp the thermodynamic processes and properties of special systems.

COURSE OUTCOMES:

The students after completion of the course will be able to

- 1. ME511.CO.1: The ability to perform thermodynamic analysis of realistic problems using computer software
- 2. ME511.CO.2: The ability to apply the first and second laws to combustion processes.
- 3. ME511.CO.3: Knowledge with property equations and thermodynamic properties of real gases.
- 4. ME511.CO.4: The thermodynamic properties and basic concepts of phase equilibrium of multi component systems.
- 5. ME511.CO.5: Ability to understand the chemical thermodynamic basis and the thermodynamic process and properties of special systems.

THEORY: Unit I Equation of State and Laws Of Thermodynamics 8 Hours State postulate for Simple System and equation of state, Ideal gas equation, Deviation from ideal gas, Equation of state for real gases, generalized Compressibility chart, Law of corresponding states 2nd law Analysis for Engg. Systems, Entropy flow & entropy generation, Increase of entropy principle, entropy change of pure sub, T-ds relations, entropy generation, thermoelectricity. Unit II **Availability Analysis and Thermodynamic Property Relations** 8 Hours Reversible work - availability - irreversibility and second - law efficiency for a closed system and steady - state control volume. Availability analysis of simple cycles. Thermodynamic potentials. Maxwell relations. Generalized relations for changes in entropy - internal energy and enthalpy generalized relations for Cp and Cv Clausius Clayperon equation, Joule - Thomson coefficient. Bridgeman tables for thermodynamic relations. 6 Hours Unit III **Real Gas Behavior and Multi – Component Systems** Different equations of state - fugacity - compressibility - principle of corresponding States - Use of generalized charts for enthalpy and entropy departure - fugacity coefficient, Lee - Kesler generalized three parameter tables. Fundamental property relations for systems of variable composition. Partial molar properties. Real gas mixtures - Ideal solution of real gases and liquid - activity - equilibrium in multi-phase systems - Gibbs phase rule for non - reactive components. Unit IV **Chemical Thermodynamics and Equilibrium** 6 Hours Thermochemistry - First law analysis of reacting systems - Adiabatic flame temperature-entropy change of reacting systems - Second law analysis of reacting systems - Criterion for reaction equilibrium. Equilibrium constant for gaseous mixtures - evaluation of equilibrium composition.

Format No.: MITAOE/ACAD/ 001

Unit V	Statistical Thermodynamics						
Microstates	Microstates and Macrostates - thermodynamic probability - degeneracy of energy levels - Maxwell -						
Boltzman, F	ermi – Diarc and Bose – Einstein statistics - microscopic interpretation of he	at and work,					
evaluation	of entropy, partion function, calculation of the Macroscopic properties fro	om partition					
functions.							
Unit VI	Irreversible Thermodynamics	4 Hours					

Conjugate fluxes and forces - entropy production Onsager's reciprocity relations - thermo – electric phenomena, formulations.

PRACTICAL: Perform ANY THREE Lab experiments/Assignment.							
Practical No. 1	Steady flow cyclic system. 4 Hours						
Computer aided e	nergy analysis of steady flow cyclic system.						
Practical No. 2	Mixture of gases, gas and vapour.	4 Hours					
Study of mixture o	f gases, gas and vapour, estimation of properties and preparation	of charts.					
Practical No. 3	Statistical thermodynamic techniques. 4 Hours						
Analysis of ideal g	as system using statistical thermodynamic techniques.						
Practical No. 4Behavior of pure substance2 Hours							
Study of behavior of pure substance with change in pressure and temperature.							
Practical No. 5Adiabatic flame temperature2 Hours							
Preparation of computer program to study the effect of percentage of theoretical on adiabatic flame							
temperature and equilibrium composition for a hydrocarbon fuel. (Program to be run for variable input							
data.)							

TEXT BOOK:

- 1. Adrian Bejan, "Advanced Engineering Thermodynamics", John Wiley and Cons, 3rd Edition,2006, (ISBN: 978-0-471-67763-5)
- 2. J.P. Holman, "Thermodynamics", McGraw Hill Inc., 1988. Fourth Edition, (ISBN: 9780070296084) 3.
- 3. Yunus A. Cengel, Michael A. Boles, "Thermodynamics- An Engineering approach", McGraw-Hill Education, 8th International edition, (ISBN13 9789814595292)

REFERENCES:

- 1. Kenneth Wark Jt.m, "Advanced Thermodynamics for Engineers", McGrew Hill Inc., 1995, (ISBN : 9780071135504)
- Smith J.M. and Van Ness H.C., "Introduction to Chemical Engineering Thermodynamics", McGraw – Hill Inc., Fourth. Edition, 1987. (ISBN : 0070587019)
- 3. Sonntag R.E., and Van Wylen G, "Introduction to Thermodynamics, Classical and Statistical Thermodynamics", John Wiley and Sons, Third Edition, 1991, (ISBN :978-0471614272)
- 4. Sears F.W. and Salinger G.I., "Thermodynamics, Kinetic Theory and Statistical Thermodynamics", Narosa Publishing House, New Delhi, Third Edition 1993, (ISBN : 978-81-85015-71-2)

(An Autonomo	ica ing us	demy of ineering Institute)	COURSE (2016	E S - 2	SYLLABI 2018)
DEPARTMENT OF MI	IANICAL ENGG.	W.E.F.	:	2016-17	
			COURSE NAME	:	Advanced Heat Transfer
F.Y. M 1	ΓEC	Н	COURSE CODE	:	ME 512
			COURSE CREDITS	:	4
RELEASE DATE	:	01/06/2017	REVISION NO.	:	0.0

TEACHING SCHEME:			EVALUATION SCHEME:						
	PRACTICA	THEORY							
LECTURE	L	ICE	ECE	I A	PRACTICAL	TUTORIALS	TOTAL		
3	NIL	40	50	1 0	2	NIL	100		

PRE-REQUISITE:	
NIL	

COURSE OBJECTIVES:

- 1. ME 512.CEO.1 To identify different mode of heat and mass transfer occurring in thermal system.
- 2. ME 512.CEO.2 To understand the methods of analyzing a heat exchanger.
- 3. ME 512.CEO.3 To analyze steady and transient conduction problem.

COURSE OUTCOMES:

The students after completion of the course will be able to

- 1. ME512.CO.1: Recall basic Knowledge while working in Industries.
- 2. ME512.CO.2: Understand the phenomenon of Natural Convection and Forced Convections of heat transfer.
- 3. ME512.CO.3: Apply analytical/logical skill while Modeling various Heat transfer phenomenon.
- 4. ME512.CO.4: Demonstrate the real life Heat transfer problems.

Format No.: MITAOE/ACAD/ 001

THEORY:								
Unit I	Introduction to Modes and Laws of Heat Transfer	6 Hours						
Simultaneous Hea	Simultaneous Heat Transfer Mechanism, Steady and Transient Heat Transfer, Multidimensional Heat							
Transfer, Thermal	Conductivity, Thermal diffusivity, Various Boundary and Initial Conditio	ns, General						
Heat Conduction I	Equation, Thermal Resistance, Generalized Thermal Resistance Networ	ks, Thermal						
Contact Resistance	e.							
Unit II	Transient Heat Conduction	6 Hours						
Lumped capacitar	nce and its validity, General lumped capacitance analysis, spatial effect	s. Problems						
related with conve	ntional geometries. Use of Haisler and Grober charts, Biot and Fourier n	umbers.						
Unit III	Principle of Fluid flow and Convective heat transfer	6 Hours						
Concept of velocit	y and thermal boundary layers: Laminar and Turbulent flow. Navier-stoke	s equations						
and convection e	quation. Boundary layer approximations and special conditions. Bou	ndary layer						
similarity. The no	ormalized convection transfer equations. Dimensionless parameters	& physical						
significance. Reyn	olds analogy, Chilton-Colburn analogy.							
Unit IV	Natural Convection Physical Mechanism	6 Hours						
Equation of motion	n and Grashoff's Number, Natural Convection over surfaces, Natural conv	vection from						
finned surfaces ar	nd PCBs, Natural Convection inside enclosures (Rectangular, Cylinder a	nd Sphere),						
Combined Natural	Convection and Radiation, Combined Natural and Forced Convection							
Unit V	Forced Convection External Forced Convection	6 Hours						
Parallel flow over	Flat plates, Flow across cylinders and spheres, Flow across tube ba	nks Internal						
Forced Convection	n Entrance region, Constant surface heat flux, Constant surface temperatu	ıre, Laminar						
and Turbulent flow	<i>i</i> in tubes.							
Unit VI	Boiling and Condensation	6 Hours						
Boiling: Boiling modes, the boiling curve, modes of pool boiling, correlations. Forced convection boiling.								
Two phase flow. Condensation: Physical mechanisms, laminar film condensation on a vertical plate.								
Turbulent film condensation, film condensation on radial systems, film condensation in horizontal tubes,								
on banks of tubes, Drop-wise condensation correlations. Thermal Radiation: Thermal radiation,								
Blackbody radiation, Radiation intensity, Radiation properties, Atmospheric and Solar radiation, Shape								
factor, Radiation	heat transfer in two surface enclosures, Radiation shields, Radiation	n exchange						
between Emitting	and Absorbing gases.							

PRACTICALS:								
Practical No. 1		4 Hours						
Transient Heat Co	Transient Heat Conduction using Heisler and Grober charts.							
Practical No. 2		4 Hours						
Numerical method in heat conduction & convection.								
Practical No. 3		4 Hours						
Combined Natural	and Forced Convection heat transfer.							
Practical No. 4		4 Hours						
Boiling and Condensation.								
Practical No. 5		4 Hours						
Radiation Heat Transfer in Two Surface Enclosures.								

TEXT BOOK:

- 1. John H Lienhard, "A Heat Transfer Textbook: Fourth Edition", Dover Publications, (ISBN-13: 978-0-486-47931-6)
- 2. S.P. Sukhatme, "Heat Transfer" Fourth Edition, Universities press, (ISBN: 81 7371 544 0)
- 3. Y V C Rao, "Heat Transfer" First Edition, Universities press, (ISBN: 81 7371 384 7)
- 4. Suhas V. Patankar, "Numerical Heat Transfer and Fluid Flow", (ISBN: 0-89116-522-3)

REFERENCES:

- Bergman, Theodore L.; Lavine, Adrienne S.; Incropera, Frank P.; DeWitt, David P., "Fundamentals of Heat and Mass Transfer, Fundamentals of Heat and Mass Transfer", New York,1985,Wiley Publication, 2011,(ISBN 0470501979)
- 2. Frank Kreith:, "Principles of Heat Transfer", Harper and Row Publishers, New York, Fourth edition,1986, (ISBN 0060437855)
- Donald Q. Kern, "Process Heat Transfer", Tata McGraw Hill Publishing Company Ltd., New Delhi. 1950, (ISBN 9780074632178)
- 4. Oszisik, "Heat Transfer", McGraw Hill, 1985, (ISBN 9780070664609)

- 5. Yunus A. Cengel, "Heat Transfer A Practical Approach", McGraw Hill International Edition, 2007, (ISBN 0073129305)
- 6. J P Holman, "Heat Transfer", McGraw-Hill Companies; 1996, 8th edition, (ISBN 0078447852)

(An Autonor	A E no	cademy of ngineering us Institute)	COURSE SYLLABI (2016 -2018)			
DEPARTMENT O	FN	IECHANICAL ENGG.	W.E.F.	:	2016-17	
			COURSE NAME	:	Technical Writing	
F	ΥM	ТЕСН	COURSE CODE	:	EX 502	
			COURSE CREDIT	:	2	
RELEASE DATE	:	1/06/2017	REVISION NO.	:	0.0	

TEACHING SCHEME :					EVALUATION SCHEME :			
	PRACTICAL		THEOR	RY	PRACTICAL	PRESENTATION/	τοται	
LEOTORE	TRACTICAL	ITA	тw	IA	TRACTICAL	DEMONSTRATION	IVIAL	
2	Nil	40	50	10	Nil	Nil	100	

PRE-REQUISITE:

NIL

COURSE OBJECTIVES:

- 1. EX502.CEO.1: Provide overview of technical English for research paper writing,
- 2. EX502.CEO.2: Research methods for classroom based studies of pedagogical innovations.
- 3. EX502.CEO.3: Study guidelines for review of technical publications.

COURSE OUTCOMES:

Students successfully completing the course will be able to,

- 1. EX502.CO.1: Apply correct verb tenses; write more effectively in English for argument essays.
- 2. EX502.CO.2: Evaluate plagiarism and explain how to prevent it
- 3. EX502.CO.3: Analyze several articles to form your own opinion on a topic make connections between several articles.
- 4. EX502.CO.4: Summarize a 7-8 page research paper use source material correctly with MLA format

THEORY:

Introduction to Technical Communication, Reading Skill, Basics of English Grammar, Technical Writing, Reports and Proposals, Referencing and Styling.

Anatomy of a Research Article, Sternberg's 12 steps of Writing, Research Paper Writing, Technology- enabled Communication, Interpretation and Use of Charts, Graphs and Tables, Software Tools for Technical Writing

PRACTICAL/TUTORIAL:

- A Group Discussion or 'Role Play' on a topic / case to be assigned to students well in time, with groups comprising six students drawn from various disciplines. Members of the group will be evaluated by two peers, all to be assigned impromptu in the class. Faculty attending will modulate the evaluations.
- 2. Preparation, submission of an innovative research article in the field of their interest / specialization.

TEXT BOOK:

- Advanced Learners's Dictionary. 8th edition, 2013., Oxford University Press; 9th Edition (2014), ISBN : 978-0194799485
- 2. Paul V. Anderson, Technical Communication: A Reader-centered Approach, 8th edition, 1st Indian reprint, new Delhi: Cengage Learning, 2014, ISBN: 9788131514030

REFERENCES:

- 1. Martin Hewings, Advanced Grammar in Use, Cambridge University Press, 2013, ISBN: 9780521532921.
- Michael Swan, Practical English Usage. 3rd Edition, Oxford University Press-New Delhi, 2006, ISBN: 9780195679892
- John Seely, The Oxford Guide to Effective Writing and Speaking, Oxford University Press, 2005, ISBN: 9780199652709.
- 4. [http://onlinestatbook.com/Online_Statistics_Education.pdf

(An Autonomo	cademy of ingineering us Institute)	COURSE SYLLABI (2016 - 2018)		
DEPARTMENT OF ME	CHANICAL ENGG.	W.E.F.	:	2016-17
		COURSE NAME	:	Advanced Fluid Mechanics
S.Y. M1	ECH	COURSE CODE	:	ME 521
		COURSE CREDITS	:	4
RELEASE DATE	01/06/2017	REVISION NO.		0.0

TEACHING	SCHEME:	EVALUATION SCHEME:					
			THEOR	Y			τοται
LECTURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	TUTORIALS	IUIAL
3	2	40	50	10	2	NIL	100

PRE-REQUISITE:		
NIL		

COURSE OBJECTIVES:

- 1. ME 521.CEO.1 To remember the fundamentals of fluid mechanics.
- 2. ME 521.CEO.2 To understand the concept of governing equations in different forms.
- 3. ME 521.CEO.3 To apply knowledge of parallel flow for several airfoils.
- 4. ME 521.CEO.4 To analyze viscous flow and compressible flow.

COURSE OUTCOMES:

- 1. ME502.CO.1: Recall basic of fluid mechanics.
- 2. ME502.CO.2: Understand the concept of governing equations in different forms.
- 3. ME502.CO.3: Apply knowledge of parallel flow for several airfoils.
- 4. ME502.CO.4: Analyze viscous flow and compressible flow.

THEORY:									
Unit I	Governing Equations: Review of Fluid Mechanics	6 Hours							
Definition and	properties of Fluids, Fluid as continuum, Continuum model, and Flow k	inematics: -							
Langragian ar	nd Eulerian description, Basic flow-analysis techniques, Flow Patterns: S	Streamlines,							
Streak lines, and Pathlines. Reynolds transport theorem, Conservation of mass, Linear momentum									
equation, Ener	equation, Energy equation, Frictionless flow, Bernoulli equation. Acceleration field of a fluid, differential								
equation of ma	ss conservation, Boundary Conditions for the basic equations, Velocity Poter	ntial, Stream							
Function, Vorti	city.								
Unit II Navier-Stokes Equations									
Generalized for	rm of NSE, Special forms: Euler equations, Bernoulli equation								
Exact solutio	ns: fully developed flow in channel, pipe, flow between concentric rotation	ig cylinders,							
Couette flow, S	Stokes First problem (unsteady flow), Creeping flow past a sphere, cylinder.								
Unit III	Potential Flows	6 Hours							
Elementary P	lane-Flow Solutions: Circulation, Superposition of Plane-Flow Solutions:	Irrotational							
vortex, Vortex	flow, Doublet, Flow past a circular cylinder, Magnus effect; Kutta-Joukowski	lift theorem;							
Concept of lift	and dragComplex potential functions. Conformal transformation to analy	yze the flow							
over flat plate	, cylinder, oval body and airfoils. Thin airfoil theory - generalized airfo	il theory for							
cambered and	flapped airfoils.								
Unit IV	Boundary Layers	6 Hours							
Boundary laye	r assumptions, equations, Flow over a flat plate, Similarity (Blasius) soluti	on, Falkner-							
Skan equation	, Momentum integral method, Flow separation.								
Unit V	Viscous flow	6 Hours							
Laminar and tu	irbulent Flow - laminar flow between parallel plates, circular pipes. Turbulent	flow, losses							
during flow th	rough pipes. Pipes in series and parallel – transmission of power thr	ough pipes,							
characteristics	of turbulence, laminar-turbulent transition, Correlation functions, Mean and	fluctuations,							
Governing equations, Turbulent boundary layer, Boundary conditions, shear stress models, Prandtl's									
mixing length, Velocity profile over a flat plate and in pipes, Equations for free shear layers: mixing layer,									
plane and axi	symmetric jet, and wake, two equation model (k- ϵ), Large Eddy Simulati	ion, Various							
Turbulent Mod	els.								
Unit VI	Compressible Flow	6 Hours							
One-dimension	nal flow: Fanno and Rayleigh curve, Normal shock relations, Introduction	to oblique							
shocks, Prandtl-Meyer expansion waves, and simple supersonic wind tunnel - Design of supersonic									

wind tunnel Nozzle. Two dimensional Subsonic flow: - Flow with small perturbations, Flow past a wave shaped wall – Gothert's rule-Laitone's modification of Prandtl Glauret rule – affine transformations – Hodograph method –Tangent Gas approximations – Rayleigh Johnson method.

PRACTICALS:		
Practical No. 1		
Flow over a cylind	er/sphere at different Re. Pressure variation over the	body and drag Estimation.
Practical No. 2		2 Hours
Flow past an aero	foil: Pressure measurements, calculation of lift.	
Practical No. 3		4 Hours
Flow through a co	nverging-diverging nozzle: subsonic and supersonic fl	ows.
Practical No. 4		4 Hours
Friction factor dete	ermination: incompressible flow through pipes/ducts of	variable cross section.
Practical No. 5		4 Hours
Laminar/Turbulen	boundary layer over a flat plate.	I

TEXT BOOK:

- Dr. R K Bansal, Fluid Mechanics and Hydraulic Machines, Laxmi Pulications, 2010, (ISBN: 978-81-318-0815-3)
- 2. E. Ratha Krishnan, "Gas Dynamics", PHI Learning Pvt. Ltd New Delhi, 2004, (ISBN : 9788120348394)

REFERENCES:

- 1. S.M.Yahya, "Fundamentals of Compressible flow", New Age Publishers, Third edition, 1992, (ISBN: 8122414680)
- 2. Streeter, "Fluid Dynamics", McGraw Hill, New York, 2010, (ISBN: 9780070701403)
- 3. William Graebel, "Advanced Fluid Mechanics", Academic Press,2007, (ISBN: 9780123708854)
- 4. A J Raudkivi , Owls books, Toledo, "Advanced Fluid Mechanics", USA, 1972, (ISBN : 0470709405)

Format No.: MITAOE/ACAD/ 001

(An Autonomous Institute)	COURS (201	COURSE SYLLABI (2016 - 2018)		
DEPARTMENT OF MECHANICAL ENGG.	W.E.F.	:	2016-17	
	COURSE NAME	:	Design of Heat Transfer Equipment's	
F.Y. MTECH	COURSE CODE	:	ME 522	
	COURSE CREDITS	:	4	
RELEASE DATE : 01/06/2017	REVISION NO.	:	0.0	

TEACHING		EVALUATION SCHEME:					
LECTURE	PRACTICAL	THEORY					ΤΟΤΑΙ
		ICE	ECE	IA	FRACTICAL	TUTURIALS	IUIAL
3	2	40	50	10	NIL	NIL	100

PRE-REQUISITE:

1. ME 512 Advanced Heat Transfer

COURSE OBJECTIVES:

- 1. ME 522.CEO.1 To understand the functioning of different heat transfer equipment's.
- 2. ME 522.CEO.2 To Understand thermal behavior of heat transfer equipment's.
- 3. ME 522.CEO.3 To Design the heat transfer equipment's from thermal point of view.

COURSE OUTCOMES:

- 1. ME522.CO.1:List the different types heat exchangers, cooling towers and furnaces
- 2. ME522.CO.2: Select the different types of heat exchangers, cooling towers and furnaces according to application.
- 3. ME522.CO.3: Apply the different methods to calculate effectiveness and pressure drop in heat exchanger.
- 4. ME522.CO.4: Analyze different heat transfer Equipment's from thermal point of view.
- 5. ME522.CO.5 Select and design appropriate heat transfer equipment for a given application.

THEORY:

Unit I Classification of Heat Exchangers

Introduction, Classification, Overview of Heat Exchanger Design Methodology, Process and Design Specifications, Thermal and Hydraulic Design, Mechanical Design, Optimum Design, Heat Exchanger Variables and Thermal Circuit, Assumptions, Basic Definitions, ε - NTU Method, The P-NTU Method, TEMA, Multi-pass Exchangers, LMTD, Heat Exchanger Arrays and Multi-passing, Sizing and Rating Problems, Kern Method, Bell Delaware Method, Numerical on Shell and tube HEX.

Unit IISolution Methods for Determining Exchanger Effectiveness8 Hours

Exact Analytical Methods, Approximate Methods, Numerical Methods, Matrix Formalism, Chain Rule Methodology, Flow-Reversal Symmetry, Design Problems, Longitudinal Wall Heat Conduction Effects, Multipass Exchangers, Non-uniform Overall Heat Transfer Coefficients, Temperature - Length - Combined Effect.

Unit III Heat Exchanger Pressure Drop Analysis

Importance of Pressure Drop, Devices, Extended Surface Heat Exchanger Pressure Drop, Tubular Heat Exchanger Pressure Drop, Tube Banks, Shell-and-Tube Exchangers, Plate Heat Exchanger Pressure Drop, Pipe Losses, Non-dimensional Presentation of Pressure Drop Data.

Unit IV Heat Transfer Characteristics

6 Hours

6 Hours

8 Hours

Dimensionless Surface Characteristics, Experimental Techniques for Determining Surface Characteristics, Steady-State Kays and London Technique, Wilson Plot Technique, Transient Test Techniques, Friction Factor Determination, Hydrodynamic ally Developing Flows, Thermally Developing Flows, Extended Reynolds Analogy, Heat Exchanger Surface Geometrical Characteristics, Selection of Heat Exchangers and Their Components, Temperature Difference Distributions.

Unit VCooling tower fundamentals8 HoursTypes, Nomenclature, material for construction, Structural components in details, Mechanical
components (Fan, Speed reducer, Valves, Safety), Electrical components, Thermal performance
testing – conduction and evaluation.

Unit VIFurnace and Thermal Devices6 HoursFurnace, Types, Parts used in furnace, Nozzles used, Heat transfer related design of systems,
Insulations, Applications in process industries. Heat pipe, Thermal interface material, use of nano

particle in heat transfer equipments, Steam Trap, Electronics cooling systems, Thermal interface materials, Heat transfer augmentation techniques.

PRACTICAL: Perform the following experiments.						
Practical No. 1		4 Hours				
Visit to study heat	exchanger manufacturing.					
Practical No. 2		4 Hours				
Study of Instrume	ntation used related to Heat exchanger.					
Practical No. 3		4 Hours				
Study of plate hea	t exchanger					
Practical No. 4		4 Hours				
Experimentation o	n any one Heat exchanger					
Practical No. 5		4 Hours				
Experimentation o	n Heat pipe	L L				

TEXT BOOK:	
 Process Heat Transfer – Donald Q. Kern, Tata McGraw-Hill 	
Process Heat Transfer – Hewitt ,Shires & Bott, CRC Press	

REFERENCES:

- 1. Cooling Tower, Fundamentals- John C. Hensley, SPX Cooling Technologies
- 2. Heat exchangers Selection, Rating and Thermal Design Sadik Kakac, Hongtan Liu, Anchasa Pramunjanaroenkij, CRC Press
- 3. Heat Pipes Theory, Design & Applications D.A. Reay, P.D.Dunn, Pergamon
- 4. Cooling Techniques for Electronic Equipment– Dave S. Steinberg, Wiley-InterScience Publication
- 5. Fundamentals of Heat Exchanger Design -Ramesh K. Shah, Dusan P. Sekulic, Wiley-India

(An Autonom	Aca Eng	demy of j ineering Institute)	COURSE SYLLABI (2016-2018)			
DEPARTMENT OF MECHANICAL ENGG.			W.E.F.	:	2016-17	
			COURSE NAME	:	Project Work I	
FY MTECH			COURSE CODE	:	ME523	
			COURSE CREDIT	:	2	
RELEASE DATE	:	1/06/2016	REVISION NO.	:	0.0	

TEACHIN	NG SCHEME :				EVALUATIO	N SCHEME :	
LECTURE	PRACTICAL		THEOF	RY	PRACTICAL	PRESENTATION/	
	FRACTICAL	ITA	ETA	IA	FRACTICAL	DEMONSTRATION	IUTAL
Nil	4				NIL	50	50

PRE-REQUISITE:

- 1. EX501 : Research Methodology
- 2. CS502 : Technical Writing

COURSE OBJECTIVES:

- 1. ME523.CEO.1: To Manage the selection and initiation of individual projects.
- 2. ME523.CEO.2: To conduct project planning activities that accurately forecast project costs, timelines, and quality.

COURSE OUTCOMES:

- 1. ME523.CO.1: Identify important concepts / real time problems from the knowledge of current trends /survey.
- 2. ME523.CO.2: Develop effective communication and presentation skills.
- 3. ME523.CO.3: Describe the time needed to successfully complete a project, considering factors such as task dependencies and task lengths.

CONTENTS

Project work is divided into four stages namely Project Stage I, Project Stage II, Project Stage IV.

Project Stage I is entirely related with selection of topic/problem by the students related to thrust areas identified by respective departments. Synopsis submission and mid trimester presentation will be conducted by department based on following points,

- Literature survey
- Motivation and Problem Statement
- Goals and Objectives

Final Project Stage I Report submission and Presentation shall be conducted at the end of the trimester. End-Trimester Assessment (ETA) presentation shall be conducted in front of eminent expert from Academics or Industry.

(An Autono		Academy of Engineering ous Institute)	COURS (2010	E S 6 - 2	SYLLABI 2018)
DEPARTMENT OF	ME	CHANICAL ENGG.	W.E.F.	:	2017-18
			COURSE NAME	••	Advances in IC engines
S.Y.	MT	ECH	COURSE CODE	••	ME 631
			COURSE CREDITS	:	3
RELEASE DATE	:	01/06/2017	REVISION NO.	:	0.0

TEACHING	EVALUATION SCHEME:						
	DRACTICAL	THEORY					τοται
LECTORE	PRACTICAL	ICE	ECE	IA	PRACTICAL	TUTORIALS	TOTAL
3	NIL	30	50	20	NIL	NIL	100

PRE-REQUISITE:

1. ME511 Advanced Thermodynamics and Combustion Technology.

COURSE OBJECTIVES:

- 1. ME 201.CEO.1 To recall the fundamentals of I.C engines, construction and working principle of an engine, and testing of an engine for analyzing its performance.
- 2. ME 201.CEO.2 To study the combustion and its controlling factors in order to design efficient engine
- 3. ME 201.CEO.3 To study emissions from I.C. engines and its controlling methods, various emission norms.

COURSE OUTCOMES:

- 1. ME201.CO.1: Recall basics of alternative fuel technology.
- 2. ME201.CO.2: Apply fundamentals of IC engines to enhance its performance-emission
- 3. characteristics.
- 4. ME201.CO.3: Develop models and simulate them for diesel engine, petrol engine, gas engine.

5. ME201.CO.4: Demonstrate the emission controlling methods and emission standards for various engines.

THEORY:						
Unit I	Measurement & Testing	6 Hours				
Introduction	, engine performance parameters, measurement and testing, engine operati	ng				
characterist	characteristics, performance maps, Mathematical models of SI and CI Engines.					
Unit II	Alternate Fuels	6 Hours				
Solid fuels,	liquid fuels, gaseous fuels, hydrogen engines, new generation alternative fue	els.				
Unit III	Engine Design	6 Hours				
Preliminary	analysis, cylinder number, size and arrangement, experimental developmen	t.				
Unit IV	Electronic Injection System	6 Hours				
Gasoline inj	ection, EFI system, MPFI system, electronic control system, injection timing	electronic				
diesel inject	ion system and control.					
Unit V	Engine Emissions & Control	6 Hours				
Air pollution	n due to IC engines, norms, engine emissions, HC, CO, NOx, particu	lates, other				
emissions, e	emission control methods, exhaust gas recirculation, modern methods, crar	nkcase blow				
by. EURO a	nd Bharat norms for emission.					
Unit VI	Simulation Technique	6 Hours				
Application	Application of simulation technique for engine tuning, engine selection parameters, recent trends in					
IC engines.	Detail study of VVT, VGT, DTSI, HCCI. Details mechanism of NVH (Noise v	ibration and				
Harshness)	in engine.					

TEXT BOOK:

- 1. V Ganesan, "Internal Combustion Engines", 4th edition, Tata McGraw Hill, 2012, (ISBN-10: 1259006190)
- 2. Jack Erjavec and Rob Thompson, "Automotive Technology", 6th edition, Delmar Thomson Learning, 2014, (ISBN-10: 1133933734)
- Mathur M. L., "Internal Combustion Engine", 4th edition, Dhanpat Rai Publication, (ISBN-10: 8189928465)

Format No.: MITAOE/ACAD/ 001

4. Shyam K. Agrawal., "Internal Combustion Engine", 4th edition, New Age publishers, 2007, (ISBN-10: 8122417825)

REFERENCES:

- Charles Fayette Taylor, "The Internal Combustion Engine in Theory and Practice", Volume I & II, 2nd The MIT Press, 1985, (ISBN: 9780262200523)
- 2. Bosch Gmbh, Robert Bosch GmbH, "Gasoline Engine Management, Bosch handbook",2nd edition, Professional Engineering Publishing, 2004, (ISBN 10: 1860584349)
- Gordon P Blair, "Design and Simulation of four stroke engines", 4th edition, SAE International, 1999, (ISBN-10: 0768004403)

(An Autonomo	Academy of Engineering ous Institute)	COURSE SYLLABI (2016 - 2020)			
DEPARTMENT OF M	ECHANICAL ENGG.	W.E.F.	:	2017-18	
		COURSE NAME	:	Energy Conservation and Management	
S.Y. M [*]	TECH	COURSE CODE	:	ME 632	
		COURSE CREDITS	:	3	
RELEASE DATE	: 01/06/2017	REVISION NO.	:	0.0	

TEACHING	EVALUATION SCHEME:						
		THEORY					ΤΟΤΑΙ
LECTORE	PRACTICAL	ICE	ECE	IA	PRACTICAL	TUTURIALS	TUTAL
3	-	40	50	10	-	NIL	100

PRE-REQUISITE:	
NIL	

COURSE OBJECTIVES:

- 5. ME 521.CEO.1 To remember importance of energy conservation and management.
- 6. ME 521.CEO.2 To understand the concept of thermal and electrical systems.
- 7. ME 521.CEO.3 To apply knowledge of various modes of energy conservation.
- 8. ME 521.CEO.4 To analyze the energy management and economics.

COURSE OUTCOMES:

- 5. ME502.CO.1: Recall importance of energy conservation and management.
- 6. ME502.CO.2: Understand the concept of thermal and electrical systems.
- 7. ME502.CO.3: Apply knowledge of various modes of energy conservation.
- 8. ME502.CO.4: Analyze the energy management and economics.

THEORY:						
ortance of Energy Conservation and Management	6 Hours					
ergy consumption, environmental aspects, Energy prices, policies, Energy	rgy auditing:					
sis, energy accounting-Measurements- Thermal and Electrical.						
ctrical Systems	6 Hours					
stems, Demand control, power factor correction, load Management, M	otor drives :					
ting, energy efficient motors, motor speed control, Lighting : lighting lev	els, efficient					
g, timers, Energy efficient windows electrical distribution systems, Tr	ansformers,					
nonic distortion.						
rmal Systems	6 Hours					
ting, excess air control, Steam distribution & use, steam traps, condensa	te recovery,					
on, Thermal Insulation. Heat exchanger networking, concept of pinch, ta	rget settling,					
bach.						
rgy Conservation	6 Hours					
umptions, equations, Flow over a flat plate, Similarity (Blasius) solution	on, Falkner-					
ervation in Pumps, Fans (flow control) and blowers, Compressed A	ir Systems,					
r conditioning systems, Waste heat recovery recuperators, heat sheets	, heat pipes,					
rgy Management, Economics	6 Hours					
nanagement, Energy Management information systems, Computer	zed energy					
gy economics, discount rate, payback period, internal rate of Retur	n, life cycle					
nergy conservation Projects.						
	prtance of Energy Conservation and Management rgy consumption, environmental aspects, Energy prices, policies, Energis, energy accounting-Measurements- Thermal and Electrical. ttrical Systems tems, Demand control, power factor correction, load Management, M ing, energy efficient motors, motor speed control, Lighting : lighting lev i, timers, Energy efficient windows electrical distribution systems, Tr poinc distortion. mal Systems ng, excess air control, Steam distribution & use, steam traps, condensa n, Thermal Insulation. Heat exchanger networking, concept of pinch, ta ach. gy Conservation umptions, equations, Flow over a flat plate, Similarity (Blasius) solutions ervontion in Pumps, Fans (flow control) and blowers, Compressed A reconditioning systems, Waste heat recovery recuperators, heat sheets gy Management, Economics nanagement, Energy Management information systems, Computering gy economics, discount rate, payback period, internal rate of Returnergy conservation Projects.					

TEXT BOOK:

- 1. L.C. Witte, P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation", Hemisphere Publication, Washington, 1988, (ISBN 0891163220)
- O. Callaghn, P.W., "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981, (ISBN: 0080272878)

- 1. G.C. Dryden, "The Efficient Use of Energy", Publ. Butterworth-Heinemann, London, 1982, (ISBN 1483107914)
- 2. W.C. turner, "Energy Management Hand book", Wiley, New York, 1982, (ISBN 1466578289)
- 3. W.R. Murphy and G. Mc KAY, "Energy Management", Butterworth's, London 1982, (ISBN 0408005084)

(An Autonomous Institute)	COURSE SYLLABI (2016 - 2018)				
DEPARTMENT OF MECHANICAL ENGG.	W.E.F.	:	2017-18		
	COURSE NAME	:	Computational Fluid Dynamics		
SY MTECH	COURSE CODE	:	ME633		
	COURSE CREDITS	:	3		
RELEASE DATE:01/06/2017	REVISION NO.	:	0.0		

TEACHING	EVALUATION SCHEME:						
LECTURE	DRACTICAL	THEORY					ΤΟΤΑΙ
LECTORE	FRACTICAL	ICE	ECE	IA	PRACTICAL	TOTORIALS	TOTAL
3		40	50	10			100

PRE-REQUISITE:

- 1. ME512- Advanced Heat Transfer
- 2. ME521- Advanced Fluid Mechanics

COURSE OBJECTIVES:

- 1. ME 633.CEO.1 Recall the knowledge of fluid mechanics and heat transfer.
- 2. ME 633.CEO.2 Develop a two dimensional flow problem by using CFD.
- 3. ME 633.CEO.3 Apply the Discretization scheme to solve Navier-stokes equation and Reynold's transport theorem.
- 4. ME 633.CEO.4 Analyze different turbulence models to the flow problems

COURSE OUTCOMES:

- 1. ME 633.CO.1 Identify the key aspects of fluid mechanics and heat transfer relevant to the setting up of a problem for CFD, and to the interpretation of the results.
- 2. ME 633.CO.2 Develop a two-dimensional flow problem for CFD solution, including geometry, boundary conditions, flow models and solution parameters.
- 3. ME 633.CO.3 Appreciate the significance of error control and validation in CFD.

4. ME 633.CO.4 Describe the nature of turbulent flows and explain why 'turbulence models' are necessary to many CFD solutions

THEORY:						
Unit I	Introduction to CFD	8 Hours				
Governinge	quations: the continuity equation, momentum equation and energy equations	s, convective				
forms of the	equations and general description, Reynolds transport theorem. Classificat	ion of partial				
differential e	quations; physical examples of elliptic, parabolic and hyperbolic equations. M	1athematical				
nature of the	e flow equations & their boundary conditions.					
Discretizatio	on: Basic discretization techniques applied to model equations and systems o	of equations:				
finite differe	nce, finite volume and finite element methods.					
Unit II	Finite Difference Methods and Finite Volume Methods	8 Hours				
Finite Differ	ence Methods Taylor series expansion, different means for formula ting finit	te difference				
equation; ad	curacy of finite difference method.					
Finite Volun	ne Methods: Finite volume methods; approximation of surface and volume	integrals;				
interpolatior	methods; central, upwind and hybrid formulations and comparison for co	nvection-				
diffusion pro	blem.					
Analysis of	numerical schemes: Concept of consistency, accuracy, stability and convergence	gence; Error				
and stability	analysis; some applications.					
Unit III	Euler's equations and Navier-Stokes Equations	8 Hours				
Solution to	Euler's equations: Formulations of Euler equations, Discretization method	ds for Euler				
equations. H	ligh resolution schemes and TVD					
Navier-Stok	es Equations: Governing equation, Properties of Navier-Stokes equation, c	liscretization				
of NS equat	ion, Boundary Condition, Convergence acceleration techniques.					
Numerical (Grid Generation: Structuredgrid generation: a) Algebraic method, b) Ellipt	icgeneration				
systems. U	nstructured grid generation: Voronoi diagram and Delaunay triangulation	; Advancing				
frontgrid generation.						
Unit IV	Turbulence Modeling	6 Hours				
Introduction	, Statistical representation of turbulent flows: General Properties of turbuler	nt quantities,				
Closure pro	blem: Necessity of turbulence modeling, Reynolds average Navier stol	kes (RANS)				
equation,						

Different types of turbulence model: Eddy viscosity models, Mixing lengths model, Turbulentkineticenergyanddissipation, The κ - ϵ model, Advantages and disadvantages of κ - ϵ model, Two-equation models: κ - ϵ model and κ - ω model, Reynolds stress equation model (RSM).

TEXT BOOKS:

- 1. Taylor, C and Hughes J.B., "Finite Element Programming of the Navier Stock Equation", Pineridge Press Ltd. U.K., 1st Edition 1981, (ISBN: 0-906674-16-6)
- 2. Fletcher C. A. J., "Computational Techniques for Fluid Dynamics: Fundamental and General Techniques", Springer-Verlag, 1st Edition, 1987, (ISBN: 0387181512/978-0387181516)
- Bose T. K., "Numerical Fluid Dynamics", Narosa Publishing House, 1st Edition, 1997, (ISBN: 8173191662, 9788173191664)

REFERENCES:

- 1. Versteeg H. K., Malalasekera. W., " An introduction to computational fluid dynamics: The finite volume method", Prentice Hall, 2nd Edition, 2007, (ISBN: 9780131274983/ 978-0131274983)
- Anderson, D.A., Tannehill, I.I., and Pletcher, R.H., "Computational Fluid Mechanics and Heat Transfer", Hemisphere Publishing Corporation, New York, USA, 3rd Edition, 2012, (ISBN: 1591690374/978-1591690375)
- 3. Niyogi P., Laha M.K., Chakrabarty S.K., "Introduction to Computational Fluid Dynamics", Pearson Education, India, 1st Edition, (ISBN: 8177587641/9788177587647)
- 4. Muralidhar, K and Sundararajan T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 1st Edition, 2003, (ISBN: 1842651722)
- 5. Ghoshdastidar, P. S., "Computer Simulation of flow and heat transfer", Tata McGraw-Hill Publishing Company Ltd.,1st Edition, 1998, (ISBN: 0074631500/9780074631508)

(An Autonomous Institute)	COURS (201	E S 6 - 2	SYLLABI 2018)
DEPARTMENT OF MECHANICAL ENGG.	W.E.F.	:	2017-18
SY MTECH	COURSE NAME	:	Compressible Fluid Flow and Gas Dynamics
	COURSE CODE	:	ME634
	COURSE CREDITS		3

01/06/2017

TEACHING	G SCHEME:		EVALUATION SCHEME:						
	URE PRACTICAL ICE ECE IA			ΤΟΤΑΙ					
LECTORE		ICE	ECE	IA	PRACTICAL	TUTORIALS	IUIAL		
3	_	30	50	20	NII	_	100		

REVISION NO.

0.0

:

וחח			CITE.
PRI	кг	UU	SHF.
			UIIE .

RELEASE DATE

1. ME521- Advanced Fluid Mechanics

:

COURSE OBJECTIVES:

- 5. ME 634.CEO.1 To basic fundamentals of compressible flow concepts
- 6. ME634.CEO.2 To understand non-dimensional numbers in compressible flow and to solve the simple compressible flow problems.
- 7. ME 634.CEO.3 To apply the effect of compressibility in nozzles and diffusers, design criteria of nozzles and diffusers.
- 8. ME 634.CEO.4 To analyze isentropic compressible flow problems
- 9. ME 634.CEO.5 To judge fluid properties, and their static-dynamic nature.

COURSE OUTCOMES:

- 4. ME634.CO.1: Understanding of fluid properties, and their static-dynamic nature.
- 5. ME634.CO.2: Understanding fundamental behavior of compressible fluid.
- 6. ME634.CO.3: Ability to apply their understanding in solving real life problem.

7. ME 634.CO.4 Analyze isentropic compressible flow problems

8. ME 634.CO.5 Judge fluid properties, and their static-dynamic nature.

THEORY:									
Unit I	Basic concepts and isentropic flows	8 Hours							
Energy and	Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and								
Mach cone	- Effect of Mach number on compressibility - Isentropic flow through varia	able ducts –							
Nozzle and	Diffusers – Use of Gas tables.								
Unit II	Flow through Constant Area Ducts	8 Hours							
Flows throu	gh constant area ducts with heat transfer (Rayleigh flow) and Friction (Fa	nno Flow) –							
variation of	flow properties – Use of tables and charts – Generalized gas dynamics.								
Unit III	Normal Shock	6 Hours							
Governing e	equations – Variation of flow parameters across the normal and oblique shoc	ks – Prandtl							
 Meyer relation 	ations – Use of table and charts – Applications.								
Unit IV	Jet propulsion	6 Hours							
Theory of j	et propulsion – Thrust equation – Thrust power and propulsive efficiency	-Operation							
principle, cy	cle analysis and use of stagnation state performance of ram jet, turbojet, the	urbofan and							
turbo prop e	turbo prop engines.								
Unit V	Space propulsion	8 Hours							
Types of rocket engines – Propellants-feeding systems – Ignition and combustion –Theory of rocket									
propulsion – Performance study – Staging – Terminal and characteristic, Velocity – Applications –									
space flight	5.								

TEXT BOOK:

- 1. J. D. Anderson, "Modern Compressible flow", McGraw Hill, 3rd Edition, 2003, (ISBN-13: 978-0072424430)
- H. Cohen, G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group Ltd., 2008. ISBN-13: 978-0132224376

3. J. D .Anderson, "Fundamentals of Aerodynamics", McGraw Hill, 5th Edition, (ISBN-13: 978-0073398105)

REFERENCES:

1.G.P. Sutton, "Rocket Propulsion Elements", Oscar Biblarz, 2010, (ISBN-13: 978-0470080245)

- A.H. Shapiro, "Dynamics and Thermodynamics of Compressible fluid Flow", John Wiley & Sons; Volume 1 edition (1 March 1977), (ISBN-13: 978-0471066910)
- 3. Robert D. Zucker Oscar Biblarz, "Fundamentals of Gas Dynamics", Wiley; 2 edition (July 15, 2002), (ISBN-13: 978-0471059677)
- 4. N.J. Zucrow, "Aircraft and Missile Propulsion", vol.1 & II, John Wiley, 1975, (ISBN-13: 978-1124142098)
- 5. Gas Turbines, V. Ganesan, Tata McGraw Hill Publishing Co., New Delhi, 1999. (ISBN: 9780070681927)

MIT	Academy of Engineering
(An Autonom	nous Institute)

COURSE SYLLABI (2016 - 2018)

DEPARTMENT OF MECHANICAL ENGG.	W.E.F.	:	2017-18
		:	Advanced Air
	COURSE NAME		Conditioning and
			Refrigeration
S.Y. MTECH			Technology
	COURSE CODE	:	ME 641
	COURSE CREDITS	:	3
RELEASE DATE : 01/06/2017	REVISION NO.	:	0.0

TEACHING		EVALUATION SCHEME:					
		THEORY					τοται
LEGIURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	TUTORIALS	TOTAL
3	0	40	50	10	NIL	NIL	100

PRE-REQUISITE:	
NIL	

COURSE OBJECTIVES:

- 1. ME 641.CEO.1 To Tell variety of air conditioning systems and its applications
- 2. ME 641.CEO.2 To state complete control systems and its choice
- 3. ME 641.CEO.4 To Apply various methods in duct system design.
- 4. ME 641.CEO.5 To Solve numericals on Applied Psychrometry and summer and winter load calculations

COURSE OUTCOMES:

- 1. ME641.CO.1: Solve numericals on Applied Psychrometry and summer and winter load calculations
- 2. ME641.CO.2: Apply various methods in design of duct system

3. ME641.CO.3: State variety of air conditioning systems, its applications, complete control systems and its choice

THEORY:									
Unit I	Psychrometry	6 Hours							
Compositio	Composition of moist air, Important psychrometric properties, Methods for estimating moist air								
properties,	Ideal Adiabatic saturation process, Relationship between Wet-Bulb Temp	perature and							
Thermodyna	amic Wet -Bulb Temperature, Sling and Aspiration psychrometers, Relation	ons between							
psychromet	ric properties, Psychrometric chart, ASHRAE Psychrometric char	ts. Use of							
psychromet	ric charts and moist air tables, Goff and Gratch tables. Psychrometric Pro	ocesses, Air							
washer, By	pass Factor, ADP, Applied Psychrometry –RSHF, GSHF and ESHF. N	umerical on							
Applied Psy	rchrometry.								
Unit II	Thermal Comfort	6 Hours							
Thermal co	mfort, Heat transfer from human body by sensible and latent heat transfer	. Metabolic							
heat genera	ation, steady state and unsteady state model for heat transfer, effect of	clothing and							
definition o	f effective temperatures. PMV and PPD. ASHRAE comfort chart, Inf	iltration and							
ventilation,	Indoor Air Quality (IAQ), Sources of indoor air pollution, Methods of control o	f IAQ, Fresh							
air requirem	ients for IAQ.								
Unit III	Heating and Cooling load calculations	6 Hours							
Differences	between winter and summer load calculations, Inside and Outside design	conditions,							
Various sou	rces of the internal and external heat gains, heat losses, Solar radiation, So	olar radiation							
through glas	ss, SHGC and shading coefficients, Heat transfer through building structure	, Methods of							
heat load ca	alculations, Numerical on summer and winter load calculations.								
Unit IV	Duct systems	6 Hours							
Frictional p	ressure drops in straight ducts of circular and rectangular cross-section	, equivalent							
diameter for rectangular duct, Pressure losses in fittings, due to sudden enlargements, contractions,									
Sizing of ducts, Velocity Reduction method, Equal friction method, Static Regain method, Selection									
of fans, Fan laws and fan characteristic curves, Air distribution in rooms, Selection and location of									
supply and return grills, diffusers etc.									
Unit V	Air conditioning systems	6 Hours							
All air syste	ms, All water systems, Air water systems, Direct Refrigerant, Unitary syst	ems, Chilled							
ceilings and	I chilled beams, displacement ventilation, VAV Air Conditioning, Air cooled	VRV (VRF)							

systems, Water cooled VRV (VRF), Two stage Evaporative cooling, Desiccant Dehumidification, Heat Pumps and their types Air Conditioning applications –Supermarkets, Restaurants, Kitchen exhaust ventilation systems Hospitals, Office buildings.

Unit VIControl systems for Refrigeration and Air conditioning applications6 HoursClosed loop and open loop control systems, Choice of control systems, Types of control action,
Energy sources, controllers and controlled devices, Control based on space temperature, Control
based on outside temperature, Control based on heating and cooling medium, Control of humidity,
Complete control systems.

TEXT BOOK:

- 1. Jan F.Kredier, "Handbook of Heating, Ventilation and Air Conditioning" CRC Press LLC, 1st edition, Year-2000, (ISBN 9780849395840).
- 2. C P Arora, "Refrigeration and Air conditioning", Tata McGraw Hill Publication, 3rd edition, Year-2008, (ISBN-13:9780070083905).

REFERENCES:

- 1. Jones W. P., "Air conditioning Applications and Design", Edward Arnold Publishers Ltd.,2nd edition,Year-2011, (ISBN-13: 978-0415502931).
- R.C. Arora, Ramesh Chandra, "Refrigeration and Air conditioning", Publisher-PHI Learning Pvt. Ltd., Eastern economy edition, Year-2010, (ISBN: 978-81-203-3915-6).
- 3. Robert McDowall, "Fundamentals of HVAC systems", Publisher-Elsevier Science; SI Ed edition,, Robert McDowall(editor), Year-2007, (ISBN-13: 978-0123739988).
- 4. ASHRAE Handbooks, ASHRAE, Cdr edition, Year-2014, (ISBN: 9781936504725).

(An Autonomous Institute)	COURSE SYLLABI (2016 - 2018)				
DEPARTMENT OF MECHANICAL ENGG.	AL ENGG. W.E.F. : 2017-18				
	COURSE NAME	:	Industrial Hydraulics and Pneumatics		
S.Y. MTECH	COURSE CODE	:	ME 642		
	COURSE CREDITS	:	3		
RELEASE DATE : 01/06/2017	REVISION NO.	:	0.0		

TEACHING		EVALUATION SCHEME:					
	DRACTICAL	THEORY					τοται
LECTORE	PRACTICAL	ITA	ETA	IA	PRACTICAL	TUTORIALS	TOTAL
3	0	30	50	20	NIL	NIL	100

PRE-REQUISITE:

1. ME521- Advanced Fluid Mechanics

COURSE OBJECTIVES:

- 1. ME 642. CEO.1: To identify various components used for hydraulic and pneumatic systems.
- 2. ME 642.CEO.2 To select appropriate components required for hydraulic and pneumatic systems
- 3. ME 642.CEO.3 To examine the hydraulic or pneumatic circuit for its functionality.
- 4. ME 642.CEO.4 To evaluate the hydraulic or pneumatic devices for their performance.
- 5. ME 642.CEO.5 To design suitable hydraulic and pneumatic circuit for given application

COURSE OUTCOMES:

The students after completion of the course will be able to

- 1. ME642.CO.1: Identify various components used for hydraulic and pneumatic systems.
- 2. ME642.CO.2: Select appropriate components required for hydraulic and pneumatic systems.
- 3. ME642.CO.3: Examine the hydraulic or pneumatic circuit for its functionality.
- 4. ME642.CO.4: Evaluate the hydraulic or pneumatic devices for their performance.
- 5. ME642.CO.5: Design suitable hydraulic and pneumatic circuit for given application.

Format No.: MITAOE/ACAD/ 001

THEORY:

Unit I Introduction to Industrial Fluid Power Systems

Power transmission modes and comparison. Fluid power and its history. Definition and interrelationships of various terms (properties) used in hydraulics and pneumatics. Laws governing fluid flow: Pascal's law, continuity equation, Bernoulli's theorem, Boyle's, Charles's, Gay-Lussac's laws). Flow through pipes - types, pressure drop in pipes. Working fluids used in hydraulic & pneumatic systems- types, ISO/BIS standards and designations, properties, advantages and limitations. Hydraulic systems - concept, application areas, advantages and limitations. Pneumatic systems - concept, application areas, advantages and limitations.

Unit II

Hydraulics and pneumatics systems

Basic Hydraulic System. Types, Construction, Working, Applications and Selection criteria of Hydraulic pipes, Hydraulic Pumps, Hydraulic Actuators, cylinder cushions and mountings. Hydraulic Control valves, Hydraulic Accessories

Basic Pneumatic System. Pneumatic Pipes - materials, designations, standards, properties and piping layout. Types, construction, working, specifications, selection criteria and Applications of following air preparation and conditioning elements: Air compressors. Air receivers and air dryers. Air Filters, Regulators, Lubricators (FRL unit). Pneumatic Actuators, Pneumatic Control valves.

Unit III Hydraulic and pneumatic circuits

ISO symbols used in hydraulic and pneumatic circuits. Guiding rules/ norms/ steps/ methods for designing hydraulic and pneumatic circuit. Basic Hydraulic Circuits – intensifier, regenerative, synchronizing, sequencing, speed control, safety, circuit diagram, components, working and applications. Basic Pneumatic Circuits - speed control, two step feed control, automatic cylinder reciprocation, time delay, quick exhaust, circuit diagram, components, working and applications. Pneumatic Logic circuit design.

Unit IV Hydraulic and pneumatic devices

Concept and applications. Construction, working principle, major elements, performance variables and applications of following devices: Automotive hydraulic brake. Industrial Fork lift. Hydraulic jack. Hydraulic press. Automotive power steering. Automotive pneumatic brake. Automotive air suspension. Pneumatic drill. Pneumatic gun (tools). Unit V Installation of hydraulic and pneumatic system

Causes and remedies for common troubles arising in hydraulic elements. Maintenance of hydraulic systems. Maintenance schedule. Troubleshooting of hydraulic system. Causes and remedies for troubles arising in pneumatic elements. Maintenance of pneumatic system. Maintenance schedule. Troubleshooting of pneumatic system.

Unit VI Hydro-pneumatics

Concept, advantages and disadvantages. Types, construction, working, Circuit diagram and application of following hydro pneumatic elements: Air oil reservoir. Hydraulic series check unit. Hydraulic parallel check unit. Hydro pneumatic cylinder. Air oil intensifier. Comparison between hydro pneumatic, hydraulic and pneumatic systems.

REFERENCES:

- 1. Andrew Jaico, "Hydraulic And Pneumatics A Technician's & Engineer's Guide", Butterworth-Heinemann; 3 edition (March 11, 2011) Publishing House, 2/e, 2013, (ISBN-13: 978-0080966748)
- 2. Noah Manring, "Hydraulic Control Systems", Wiley; 1 edition (April 15, 2005), (ISBN-13: 978-0471693116)
- 3. Fluid Power Generation, Transmission and Control Jagadeesha, T. Universities Press (India) Private Limited, 1/e, 2014, (ISBN: 9788126539543)

(An Autonomous Institute)	COURSE SYLLABI (2016 - 2020)				
DEPARTMENT OF MECHANICAL ENGG.	W.E.F.	:	2017-18		
	COURSE NAME	:	Cryogenics and Vacuum Technology		
SY MTECH	COURSE CODE	:	ME 643		
	COURSE CREDITS	:	3		
RELEASE DATE : 01/06/2017	REVISION NO.	:	0.0		

TEACHING	TEACHING SCHEME:					EVALUATION SCHEME:		
	DRACTICAL	THEORY					τοται	
LEGIURE	PRACTICAL	ICE	ECE	IA	PRACTICAL	TUTORIALS	TOTAL	
3		40	50	10			100	

PRE-REQUISITE:	
NIL	

COURSE OBJECTIVES:

- 1. ME 643.CEO.1 To recall the fundamentals of cryogenic and air gas Liquefaction system
- 2. ME 643.CEO.2 To classify Gas Separation and Purification Systems
- 3. ME 643.CEO.3 To summarize various Vacuum Process and cryogenic fluid storage system
- 4. ME 643.CEO.4 To identify the advance application of Cryogenic Engineering

COURSE OUTCOMES:

- 1. ME 643.CO.1 Analyze the cryogenic and air gas liquefaction system using thermodynamic cycle
- 2. ME 643.CO.2 Measure the performance of gas separation and purification system with respect to thermodynamically ideal Separation System
- 3. ME 643.CO.3 Design the Cryogenic fluid storage system
- 4. ME 643.CO.4 Adapt the advanced cryogenic system in various industrial and domestic applications

THEORY:										
Unit I	Introduction to Cryogenic Systems and Air –Gas Liquefaction	8 Hours								
Introductio	n to Cryogenic Systems: Definition, cryogenic temperature scale, History o	f cryogenics,								
Properties of	Properties of materials at Low temperature, Properties of Cryogenic Fluids.									
Air and Gas Liquefaction Systems: Thermodynamically ideal system, Production of low										
temperature	temperatures. Liquefaction systems for gases other than neon, hydrogen and helium, liquefaction									
Systems for	Systems for neon hydrogen and helium. Cryogenic Refrigeration System.									
Unit II	Gas Separation and Purification System	8 Hours								
Gas separa	tion and Gas Purification systems: The thermodynamically ideal separate	ation System								
Properties of	f mixtures, Principles of gas separation, air separation systems, Hydrogen, A	rgon, helium								
air separatio	on systems, Gas purification methods.									
Unit III	Vacuum Techniques	6 Hours								
Vacuum Te	chniques: System for production of high vacuum such as mechanical, diffus	sion, ion and								
cryopumps.	Cryogenics Measurement Systems: Temperature pressure, flow rate,	liquid level								
measureme	nt, Introduction to Cryocoolers.									
Cryogenic	fluid storage systems: Introduction, Basic storage vessels, inner vessels,	outer vessel								
design, pipir	ng, access manways, safety device. Cryogenic Insulations, gas filled powders	s and fibrous								
materials, s	olid foam, selection and comparison of insulations. Cryogenic fluid trans	fer systems.								
Transfer thr	ough uninsulated line vacuum insulated lines porous insulated lines etc									
Unit IV	Advances in Cryogenics	6 Hours								
Vortex tube	and applications, Pulse tube refrigerator Cryogenic Engine for space vehicle	es Cryogenic								
Applications	: Applications in gas industry cryogenic fluids space research, Cryob	iology, food								
processing,	electronics nuclear and high energy physics, chemical Processing metal m	anufacturing								
cryogenic power generation, medicine, analytical Physics and chemistry.										
REFERENCES:										
1. Barron F	R. F., "Cryogenic Systems", 2nd Ed., Oxford University Press, 1985, (ISBN-0	-19-503567-								
4).										
2. Timmerh ISBN-0-	aus K. D. and Flynn T. M., "Cryogenic Process Engineering", 1st ed., Spr 19-503567-4. ISBN-10: 1468487582, (ISBN-13: 978-1468487589.	inger, 1989,								

(An Autonomo	cademy of ngineering us Institute)	COURSE SYLLABI (2016 - 2018)			
DEPARTMENT OF MEC	HANICAL ENGG.	W.E.F.	••	2017-18	
		COURSE NAME	••	Steam Engineering	
S.Y. MTE	СН	COURSE CODE	:	ME 644	
		COURSE CREDITS	•	3	
RELEASE DATE :	01/06/2017	REVISION NO.	:	0.0	

TEACHING SCHEME:					EVALUATION SCHEME:			
		THEORY					ΤΟΤΑΙ	
LECTORE	PRACTICAL	ICE	ECE	IA	FRACTICAL	TOTORIALS	TOTAL	
3	NIL	40	50	10	NIL	NIL	100	

PRE-REQUISITE:

ME511 Advanced Thermodynamics and Combustion Technology.

COURSE OBJECTIVES:

- 1. ME 644.CEO.1 To recall the fundamentals of different boilers and significance of mountings and accessories.
- 2. ME 644.CEO.2 To explain fundamentals energy conservation.
- 3. ME 644.CEO.3 To analyze thermal systems for energy conservation.

COURSE OUTCOMES:

- 1. ME644.CO.1: Recall basics of steam piping system, its components for a process and also economical and effective insulation.
- 2. ME644.CO.2: Apply knowledge of thermal system for sources of waste heat design a systems for waste heat recovery.
- 3. ME644.CO.3: Develop controls and instrumentation for effective monitoring of the process.

4. ME644.CO.4: Design a steam piping system, its components for a process and also economical and effective insulation.

THEORY:								
Unit I	Introduction:	6 Hours						
Fundamenta	als of steam generation, Quality of steam, Use of steam table, Mollier Chart							
Boilers, Types, Mountings and Accessories, Combustion in boilers, Determination of adiabatic flame								
temperature, quantity of flue gases, Feed Water and its quality, Blow down; IBR, Boiler standards.								
Unit II	Piping & Insulation:	6 Hours						
Water Line,	Steam line design and insulation; Insulation-types and application, Economi	c thickness						
of insulation	, Heat savings and application criteria, Refractory-types, selection and appli	cation of						
refractory, H	leat loss.							
Unit III	Steam Systems:							
Assessmen	t of steam distribution losses, Steam leakages, Steam trapping, Condensate	and flash						
steam recov	very system, Steam Engineering Practices; Steam Based Equipment's / Syst	ems.						
Unit IV	Boiler Performance Assessment:	6 Hours						
Performanc	e Test codes and procedure, Boiler Efficiency, Analysis of losses; performan	ice						
evaluation c	f accessories; factors affecting boiler performance.							
Unit V	Energy Conservation and Waste Minimization:	6 Hours						
Energy cons	servation options in Boiler; waste minimization, methodology; economic viab	ility of						
waste minimization.								
Unit VI	Instrumentation & Control:	6 Hours						
Process ins	trumentation; control and monitoring. Flow, pressure and temperature meas	uring and						
controlling instruments, its selection.								

- 1. T. D. Estop, A. McConkey, Applied Thermodynamics, Parson Publication.
- 2. Domkundwar; a Course in Power Plant Engineering; Dhanapat Rai and Sons.
- Yunus A. Cengel and Boles, "Engineering Thermodynamics ", Tata McGraw-Hill Publishing Co. Ltd.

REFERENCES:

- 1. Energy Efficiency in Thermal Utilities; Bureau of Energy Efficiency.
- 2. Energy Performance Assessment for Equipment & Utility Systems; Bureau of Energy Efficiency.
- Edited by J. B. Kitto & S C Stultz; Steam: Its Generation and Use; The Babcock and Wilcox Company.
- 4. P. Chatopadhyay; Boiler Operation Engineering: Questions and Answes; Tata McGrawHill Education Pvt Ltd, N Delhi.

(An Autonom	Aca Eng	demy of jineering Institute)	COURSE SYLLABI (2016-2018)					
DEPARTMENT OF	HANICAL ENGG.	W.E.F.	:	2017-18				
			COURSE NAME	:	Project Work II			
SY	СН	COURSE CODE	:	ME604				
			COURSE CREDIT	:	4			
RELEASE DATE	:	1/06/2017	REVISION NO.	:	0.0			

TEACHIN	NG SCHEME :				EVALUATION SCHEME :			
		THEORY				PRESENTATION/	ΤΟΤΑΙ	
LECTORE	PRACTICAL	ITA	ETA	IA	FRACTICAL	DEMONSTRATION	TOTAL	
NIL	8			50	NIL	50	100	

PREREQUISITES:

1. ME 523 Project Work I

COURSE OBJECTIVES:

- 1. ME604.CEO.1: To develop self-management, documentation & technical skills.
- 2. ME604.CEO.2: To Demonstrate a strong working knowledge of ethics and professional responsibility.

COURSE OUTCOMES:

- 1. ME604.CO.1: Develop self-management, documentation & technical skills.
- 2. ME604.CO.2: Design, analyze & troubleshoot schematics, connection diagrams, block diagrams, timing diagrams for a given electronics circuit or system.

CONTENTS

Project Stage II is related with Goals and Objectives, System Architecture, Algorithm /Methodology. Project report submission and mid trimester presentation will be conducted by department based on following points,

- Literature survey
- Motivation and Problem Statement
- Goals and Objectives
- Problem statement
- System Architecture
- UML, DFD, Design Details
- Proposed Algorithm
- Expected Outcome and Result
- Preparation of manuscript (paper) on Literature survey

Final Project Stage II Report submission and Presentation shall be conducted at the end of the trimester. End-Trimester Assessment (ETA) presentation shall be conducted in front of eminent expert from Academics or Industry.

(An Autonom	Aca Eng	demy of jineering Institute)	COURSE SYLLABI (2016-2018)				
DEPARTMENT OF	F MEC	HANICAL ENGG.	W.E.F.	:	2017-18		
			COURSE NAME	:	Project Work III		
SY	СН	COURSE CODE	:	ME611			
			COURSE CREDIT	:	10		
RELEASE DATE	:	1/06/2017	REVISION NO.	:	0.0		

TEACHIN	NG SCHEME :				EVALUATION SCHEME :			
	PRACTICAL	THEORY				PRESENTATION/	τοται	
LEGIONE	TRACTICAL			IA	TRACTICAL	DEMONSTRATION	IUIAL	
NII	20			150	NIL	50	200	

1. ME523 Project Work I

2. ME601 Project Work II

COURSE OBJECTIVES:

1. ME611.CEO.1: Demonstrate effective project execution and techniques that result in successful projects.

COURSE OUTCOME:

1. ME611.CO.1: To execute work within prescribed guidelines, project specifications, and within a proposed budget.

CONTENTS

Project Stage III is related with Design, Algorithm /Methodology Implementation Results. Project report submission and mid trimester presentation will be conducted by department based on following points,

- Literature survey
- Motivation and Problem Statement
- Goals and Objectives
- Problem statement
- System Architecture
- UML, DFD, Design Details
- Proposed Algorithm
- Methodology
- Implementation
- Results
- Preparation of manuscript (paper) on Literature survey as mentioned in Project Work II
- Preparation of manuscript (paper) on design
- Publication details of paper on Literature survey and Design (Peer reviewed International conference like IEEE, ACM, Elsevier, Springer etc)

Final Project Stage III Report submission and Presentation shall be conducted at the end of the trimester. End-Trimester Assessment (ETA) presentation shall be conducted in front of eminent expert from Academics or Industry

(An Autonom	Aca Eng	demy of jineering Institute)	COURSE SYLLABI (2016-2018)					
DEPARTMENT OF	F MEC	HANICAL ENGG.	W.E.F.	:	2017-18			
			COURSE NAME	:	Project Work IV			
SY	СН	COURSE CODE	:	ME621				
			COURSE CREDIT	:	10			
RELEASE DATE	:	1/06/2017	REVISION NO.	:	0.0			

TEACHIN	NG SCHEME :				EVALUATION SCHEME :			
		THEORY				PRESENTATION/	τοται	
LEGIONE	TRACTICAL	ITA	ETA IA		INACTIONE	DEMONSTRATION	IUIAL	
NIL	20			200	NIL	100	300	

PREREQUISITES:	
1. ME523 Project Work I	
2. ME601 Project Work II	
3. ME611 Project Work III	

COURSE OBJECTIVES:

1. ME621.CEO.1: Demonstrate effective project execution and techniques that result in successful projects.

COURSE OUTCOME:

1. ME621.CO.1: To execute work within prescribed guidelines, project specifications, and within a proposed budget.

CONTENTS

Project Stage IV is related with Algorithm /Methodology Implementation, Results, Result Analysis using various charts/ graphs. Project report submission and mid trimester presentation will be conducted by department based on following points.

- Literature survey
- Motivation and Problem Statement
- Goals and Objectives
- Problem statement
- System Architecture
- UML, DFD, Design Details
- Proposed Algorithm
- Methodology
- Implementation
- Results
- Result Analysis
- Preparation of manuscript (paper) on Literature survey as mentioned in Project Work II
- Preparation of manuscript (paper) on design as mentioned in Project Work III
- Publication details of paper on Literature survey and Design (Peer reviewed International conference like IEEE, ACM, Elsevier, Springer etc) as mentioned in Project Work III

• Publication details of paper on Result analysis (Peer reviewed /Free International Journal) Final Project Stage III Report submission and Presentation shall be conducted at the end of the trimester. End-Trimester Assessment (ETA) presentation shall be conducted in front of eminent expert from Academics or Industry.