

## AspenTech-MITAOE PRAKALP'25 University Talents IDPS Competition

Date: 21st March 2025

**Duration for model building:** 2 Days

Approximate Time expected for model development: 2-3 Hours

Product Version: V12.1 and above

Presentation Time per (Batch or Individual): 10 Mins

**Description** 

AspenTech is excited to present a challenging competition designed to test the skills and capabilities of young university talents in the field of simulation modeling using industryleading software, Aspen HYSYS. This program aims to identify and nurture the next generation of chemical process engineers by providing an opportunity to solve real-world, industrydefined problems that are crucial in the fields of chemical, petrochemical, and petroleum refining industries.

Industry-defined problem-solving is a vital skill for emerging engineers, and AspenTech is committed to uncovering top-tier talents who can contribute to addressing the pressing sustainability challenges of tomorrow. In this competition, participants will have the chance to showcase their creativity, technical knowledge, and innovative thinking as they tackle complex problems using Aspen HYSYS.

We invite university students to test their expertise in simulation modeling, demonstrate their critical thinking, and provide new perspectives on sustainability in the chemical engineering sector. The competition offers a platform to shine, gain recognition, and potentially become an asset to leading industries.



### Industry Defined Problem Statement: Gas Sweetening Process Modeling Using Diethanolamine (DEA)

*Note: Develop the model from the scratch. No starter files available.* 

**Process Description:** In this problem, you are tasked with modeling a standard gas sweetening process using diethanolamine (DEA) as the absorbent. The key steps involved are as follows:

- A water-saturated natural gas stream is introduced into an amine contactor (Absorber).
- Diethanolamine (DEA) at a concentration of 28 wt. % in water is used as the absorbing medium.
- The contactor consists of **20 real stages**.
- The rich amine solution is then flashed from a pressure of **6900 kPa to 620 kPa** before it enters the rich/lean amine exchanger, where it is heated to a regenerator feed temperature of **95°C** (with optional temperature estimates of 40°C for the top stage and 70°C for the bottom stage).
- The rich amine exiting the separator needs to be pre-heated before being fed into the regenerator column.

The regenerator (modeled as a Distillation Column) consists of 18 real stages.

- Acid gas is rejected from the regenerator at 45°C, while the lean amine is produced at approximately 125°C.
- The lean amine is then cooled and recycled back to the contactor.

### Tasks:

#### 1. Utility Mass Flow Rates:

- Report the mass flow rate values for the major equipment involved (e.g., Absorber, Rich/Lean Amine Exchanger, Regenerator). Assign appropriate utilities for each piece of equipment and justify your choice of utility.
- 2. Carbon Tax Impact (Scope 1 & Scope 2 CO2):
  - Given a carbon/carbon tax rate of \$1.361e-2/lb, calculate the Scope 1 and Scope 2 CO2 equivalent emissions for the process.
  - Explain the significance of predicting the **CO2 Index** and how it is calculated in **HYSYS**.
- 3. Process Simulation:
  - Using a process simulation tool like **HYSYS**, explain the fluid package chosen, unit operations used, and reaction sets added.

# ( aspentech

• Discuss the main results obtained from the simulation, including the performance of the **regeneration column** and the efficiency of the **acid gas sweetening process** modeled in the simulation.

### **Expectation from talents (Group / Individual)**

- Present your findings in a **PowerPoint presentation** (max 5 slides), including:
  - An overview of the entire process and simulation setup.
  - The utility mass flow rate calculations and justifications.
  - CO2 emission calculations (Scope 1 & Scope 2).
  - Explanation of the CO2 index calculation in HYSYS.
  - Key insights from the simulation, focusing on the efficiency of the acid gas sweetening process.

**Note:** Make sure your presentation is clear and concise, detailing the technical aspects of the gas sweetening process while keeping the explanation accessible for a wide audience.

| Name        | Sour Gas                  |
|-------------|---------------------------|
| Temperature | 25 °C (77 °F)             |
| Pressure    | 6900 kPa (1001 psia)      |
| Molar Flow  | 1245 kgmole/h (25 MMSCFD) |
| Component   | Mole Fraction             |
| Nitrogen    | 0.0016                    |
| H2S         | 0.0172                    |
| CO2         | 0.0413                    |
| Methane     | 0.8692                    |
| Ethane      | 0.0393                    |
| Propane     | 0.0093                    |
| i-Butane    | 0.0026                    |
| n-Butane    | 0.0029                    |
| i-Pentane   | 0.0014                    |
| n-Pentane   | 0.0012                    |
| n-Hexane    | 0.0018                    |
| H2O         | 0.0122                    |
| DEAmine     | 0.0000                    |

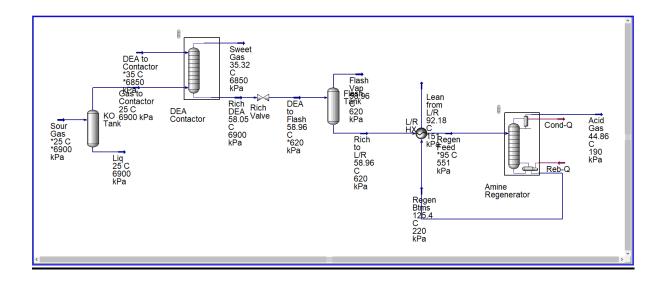
### Feed Data



| Name                   | DEA to Contactor                    |
|------------------------|-------------------------------------|
| Temperature            | 35 °C (95 °F)                       |
| Pressure               | 6850 kPa (993.5 psia)               |
| Std Ideal Liq Vol Flow | 43.15 m <sup>3</sup> /h (190 USGPM) |
| Component              | Mass Fraction                       |
| H2O                    | 0.72                                |
| DEAmine                | 0.28                                |

Column Dimension – DEA Contactor

| Weir Height            | 25.0 mm (0.984 in) |                 |
|------------------------|--------------------|-----------------|
| Weir Length            | 1.0 m (3.281 ft)   |                 |
| Section Diameter       | 1.219 m (4.0 ft)   |                 |
| Name                   |                    | L/R HX          |
| Tube Side Inlet        |                    | Rich to L/R     |
| Tube Side Outlet       |                    | Regen Feed      |
| Shell Side Inlet       |                    | Regen Btms      |
| Shell Side Outlet      |                    | Lean from L/R   |
| Parameters             |                    |                 |
| Heat Exchanger Model   |                    | Simple Weighted |
| Tube Side Delta P      |                    | 69 kPa (10 psi) |
| Shell Side Delta P     |                    | 69 kPa (10 psi) |
| Worksheet              |                    |                 |
| Regen Feed, Temperatur | е                  | 95 °C (203 °F)  |
|                        |                    |                 |


# **aspen**tech

| Name                                                       | Amine Regenerator                     |  |  |  |
|------------------------------------------------------------|---------------------------------------|--|--|--|
| No. of Stages                                              | 18                                    |  |  |  |
| Inlet Stream                                               | Regen Feed                            |  |  |  |
| Inlet Stage                                                | 4_Main Tower                          |  |  |  |
| Condenser Type                                             | Full Reflux                           |  |  |  |
| Ovhd Vapour Outlet                                         | Acid Gas                              |  |  |  |
| Bottoms Liquid Outlet                                      | Regen Btms                            |  |  |  |
| Condenser Energy Stream                                    | Cond-Q                                |  |  |  |
| Reboiler Energy Stream                                     | Reb-Q                                 |  |  |  |
| Reboiler                                                   |                                       |  |  |  |
| Configuration                                              | Once-Through / Regular Hysys Reboiler |  |  |  |
| Pressure Profile                                           |                                       |  |  |  |
| Condenser                                                  | 190 kPa (27.5 psia)                   |  |  |  |
| Condenser Pressure Drop                                    | 15 kPa (2.2 psia)                     |  |  |  |
| Reboiler Pressure Drop                                     | 0 kPa (0 psi)                         |  |  |  |
| Reboiler                                                   | 220 kPa (31.9 psia)                   |  |  |  |
| Optional Estimates                                         |                                       |  |  |  |
| Temperature Estimates                                      | Leave these blank (Not req'd)         |  |  |  |
| Column Specs – Enter on Design   Monitor or Design   Specs |                                       |  |  |  |
| First Spec - Column Temperate                              | ure                                   |  |  |  |
| Stage                                                      | Condenser                             |  |  |  |
| Spec Value                                                 | 45 °C (113 °F)                        |  |  |  |
| Status                                                     | Active                                |  |  |  |
| Second Spec - Column Duty                                  |                                       |  |  |  |
| Energy Stream                                              | Reb-Q @ COL2 (Reboiler)               |  |  |  |
| Spec Value                                                 | 1.4 E+7 kJ/h (1.33 E+7 Btu/hr)        |  |  |  |
| Status                                                     | Active                                |  |  |  |
| Third Spec – Column Draw Rate                              |                                       |  |  |  |
| Draw                                                       | Acid Gas @ COL2                       |  |  |  |
| Spec Value                                                 | 74.7 kgmole/h (1.5 MMSCFD)            |  |  |  |
| Status                                                     | Estimate                              |  |  |  |
|                                                            |                                       |  |  |  |



### **Regenerator Column Internal**

| Column Type     | Sieve            |
|-----------------|------------------|
| Column Diameter | 1.0 m (3.281 ft) |
| Weir Height     | 50.8 mm (2.0 in) |

